Mathematics (MEI)

Advanced GCE A2 7895-8

Advanced Subsidiary GCE AS 3895-8

Mark Schemes for the Units

January 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Further Mathematics (MEI) (7896)Advanced GCE Further Mathematics (Additional) (MEI) (7897)Advanced GCE Mathematics (MEI) (7895)Advanced GCE Pure Mathematics (MEI) (7898)
Advanced Subsidiary GCE Further Mathematics (MEI) (3896)Advanced Subsidiary GCE Further Mathematics (Additional) (MEI) (3897)Advanced Subsidiary GCE Mathematics (MEI) (3895)
Advanced Subsidiary GCE Pure Mathematics (MEI) (3898)
MARK SCHEMES FOR THE UNITS
Unit/Content Page
4751 (C1) Introduction to Advanced Mathematics 1
4752 (C2) Concepts for Advanced Mathematics 7
4753 (C3) Methods for Advanced Mathematics 10
4754 (C4) Applications of Advanced Mathematics 14
4755 (FP1) Further Concepts for Advanced Mathematics 19
4756 (FP2) Further Methods for Advanced Mathematics 24
4758 Differential Equations 29
4761 Mechanics 1 33
4762 Mechanics 2 38
4763 Mechanics 3 42
4766 Statistics 1 46
4767 Statistics 2 50
4768 Statistics 3 54
4771 Decision Mathematics 1 59
4776 Numerical Methods 64
Grade Thresholds 67

4751 (C1) Introduction to Advanced Mathematics

1	[$a=] 2 c^{2}-b$ www o.e.	3	M1 for each of 3 complete correct steps, ft from previous error if equivalent difficulty
2	$\begin{aligned} 5 x-3 & <2 x+10 \\ 3 x & <13 \\ x & <\frac{13}{3} \text { o.e. } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \end{aligned}$	condone ' $=$ ' used for first two Ms M0 for just $5 x-3<2(x+5)$ or $-13<-3 x$ or ft or ft ; isw further simplification of $13 / 3$; M0 for just $x<4.3$
3 (i)	$(4,0)$	1	allow $y=0, x=4$ bod $\mathbf{B 1}$ for $x=4$ but do not isw: $\mathbf{0}$ for $(0,4)$ seen $\mathbf{0}$ for $(4,0)$ and $(0,10)$ both given (choice) unless $(4,0)$ clearly identified as the x-axis intercept
3 (ii)	$5 x+2(5-x)=20 \text { o.e. }$ (10/3, $5 / 3)$ www isw	M1 $\mathbf{A 2}$	for subst or for multn to make coeffts same and appropriate addn/subtn; condone one error or A1 for $x=10 / 3$ and A1 for $y=5 / 3$ o.e. isw; condone 3.33 or better and 1.67 or better A1 for (3.3, 1.7)
4 (i)	translation by $\binom{-4}{0}$ or 4 [units] to left	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	0 for shift/move or 4 units in negative x direction o.e.
4 (ii)	sketch of parabola right way up and with minimum on negative y-axis \min at $(0,-4)$ and graph through -2 and 2 on x-axis	B1 B1	mark intent for both marks must be labelled or shown nearby
5 (i)	$\frac{1}{12} \text { or } \pm \frac{1}{12}$	2	M1 for $\frac{1}{144^{\frac{1}{2}}}$ o.e. or for $\sqrt{144}=12$ soi
5 (ii)	$\text { denominator }=18$ $\text { numerator }=5-\sqrt{7}+4(5+\sqrt{7})$ $=25+3 \sqrt{7}$ as final answer	B1 M1 A1	B0 if 36 after addition for M1, allow in separate fractions allow $\mathbf{B 3}$ for $\frac{25+3 \sqrt{7}}{18}$ as final answer www

6 (i)	cubic correct way up and with two turning pts touching x-axis at -1 , and through it at 2.5 and no other intersections y - axis intersection at -5	B1 B1 B1	intns must be shown labelled or worked out nearby
6 (ii)	$2 x^{3}-x^{2}-8 x-5$	2	B1 for 3 terms correct or M1 for correct expansion of product of two of the given factors
7	$\begin{aligned} & \text { attempt at } \mathrm{f}(-3) \\ & -27+18-15+k=6 \\ & k=30 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	or M1 for long division by $(x+3)$ as far as obtaining $x^{2}-x$ and A1 for obtaining remainder as $k-24$ (but see below) equating coefficients method: M2 for $(x+3)\left(x^{2}-x+8\right)[+6]$ o.e. (from inspection or division) eg M2 for obtaining $x^{2}-x+8$ as quotient in division
8	$x^{3}+15 x+\frac{75}{x}+\frac{125}{x^{3}}$ www isw or $x^{3}+15 x+75 x^{-1}+125 x^{-3}$ www isw	4	B1 for both of x^{3} and $\frac{125}{x^{3}}$ or $125 x^{-3}$ isw and M1 for 1331 soi; A1 for each of $15 x$ and $\frac{75}{x}$ or $75 x^{-1}$ isw or SC2 for completely correct unsimplified answer

9	$\begin{aligned} & x^{2}-5 x+7=3 x-10 \\ & x^{2}-8 x+17[=0] \text { o.e or } \\ & y^{2}-4 y+13[=0] \text { o.e } \end{aligned}$ use of $b^{2}-4 a c$ with numbers subst (condone one error in substitution) (may be in quadratic formula) $b^{2}-4 a c=64-68$ or -4 cao [or $16-52$ or -36 if y used] $[<0]$ so no [real] roots [so line and curve do not intersect]	M1 M1 M1 A1 A1	or attempt to subst $(y+10) / 3$ for x condone one error; allow M1 for $x^{2}-8 x=-17$ [oe for y] only if they go on to completing square method or $(x-4)^{2}=16-17$ or $(x-4)^{2}+1=0$ (condone one error) or $(x-4)^{2}=-1$ or $x=4 \pm \sqrt{-1}$ $\left[\right.$ or $(y-2)^{2}=-9$ or $\left.y=2 \pm \sqrt{-9}\right]$ or conclusion from comp. square; needs to be explicit correct conclusion and correct ft ; allow ' <0 so no intersection' o.e.; allow ' -4 so no roots' etc allow A2 for full argument from sum of two squares $=0$; A1 for weaker correct conclusion some may use the condition $b^{2}<4 a c$ for no real roots; allow equivalent marks, with first A1 for $64<68$ o.e.
10 (i)	$\operatorname{grad} \mathrm{CD}=\frac{5-3}{3-(-1)}\left[=\frac{2}{4}\right.$ o.e. $]$ isw $\operatorname{grad} \mathrm{AB}=\frac{3-(-1)}{6-(-2)}$ or $\frac{4}{8}$ isw same gradient so parallel www	M1 M1 A1	NB needs to be obtained independently of grad AB must be explicit conclusion mentioning 'same gradient' or 'parallel' if M0, allow B1 for 'parallel lines have same gradient' o.e.
10 (ii)	$\begin{aligned} & {\left[\mathrm{BC}^{2}=\right] 3^{2}+2^{2}} \\ & {\left[\mathrm{BC}^{2}=\right] 13} \\ & \text { showing } \mathrm{AD}^{2}=1^{2}+4^{2}[=17]\left[\neq \mathrm{BC}^{2}\right] \\ & \text { isw } \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	accept $(6-3)^{2}+(3-5)^{2}$ o.e. or $[\mathrm{BC}=] \sqrt{13}$ or $[\mathrm{AD}=] \sqrt{17}$ or equivalent marks for finding AD or AD^{2} first alt method: showing $\mathrm{AC} \neq \mathrm{BD}$ - mark equivalently

\begin{tabular}{|c|c|c|c|}
\hline 10 (iii) \& \begin{tabular}{l}
[BD eqn is] \(y=3\) \\
eqn of AC is \(y-5=6 / 5 \times(x-3)\) o.e
\[
[y=1.2 x+1.4 \text { o.e. }]
\] \\
\(M\) is \((4 / 3,3)\) o.e. isw
\end{tabular} \& M1
M2

A1 \& | eg allow for 'at M, $y=3$ ' or for 3 subst in eqn of AC |
| :--- |
| or M1 for grad AC $=6 / 5$ o.e. (accept unsimplified) and M1 for using their grad of AC with coords of $\mathrm{A}(-2,-1)$ or C $(3,5)$ in eqn of line or M1 for 'stepping' method to reach M |
| allow : at $\mathrm{M}, x=16 / 12$ o.e. $[\mathrm{eg}=4 / 3]$ isw A0 for 1.3 without a fraction answer seen |

\hline 10 (iv) \& | midpt of $\mathrm{BD}=(5 / 2,3)$ or equivalent simplified form cao |
| :--- |
| midpt $\mathrm{AC}=(1 / 2,2)$ or equivalent simplified form cao or ' M is $2 / 3$ of way from A to C ' conclusion 'neither diagonal bisects the other' | \& M1

M1

A1 \& | or showing $\mathrm{BM} \neq \mathrm{MD}$ oe |
| :--- |
| $[B M=14 / 3, M D=7 / 3]$ |
| or showing $\mathrm{AM} \neq \mathrm{MC}$ or $\mathrm{AM}^{2} \neq \mathrm{MC}^{2}$ |
| in these methods A1 is dependent on coords of M having been obtained in part (iii) or in this part; the coordinates of M need not be correct; it is also dependent on midpts of both AC and BD attempted, at least one correct |
| alt method: show that mid point of BD does not lie on AC (M1) and vice-versa (M1), A1 for both and conclusion |

\hline
\end{tabular}

11 (i)	$\begin{aligned} & \text { centre } \mathrm{C}^{\prime}=(3,-2) \\ & \text { radius 5 } \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{1} \end{aligned}$	0 for ± 5 or -5
11 (ii)	showing $(6-3)^{2}+(-6+2)^{2}=25$ showing that $\overrightarrow{A C^{\prime}}=\overrightarrow{C^{\prime} B}=\binom{-3}{4}$ o.e.	B1 B2	interim step needed or B1 each for two of: showing midpoint of $\mathrm{AB}=(3,-2)$; showing $\mathrm{B}(0,2)$ is on circle; showing $\mathrm{AB}=10$ or B2 for showing midpoint of $\mathrm{AB}=(3,-2)$ and saying this is centre of circle or $\mathbf{B 1}$ for finding eqn of AB as $y=-4 / 3 x+2$ o.e. and $\mathbf{B} 1$ for finding one of its intersections with the circle is $(0,2)$ or B1 for showing $\mathrm{C}^{\prime} \mathrm{B}=5$ and $\mathbf{B 1}$ for showing $\mathrm{AB}=10$ or that AC^{\prime} and BC^{\prime} have the same gradient or B1 for showing that AC^{\prime} and BC^{\prime} have the same gradient and B1 for showing that $\mathrm{B}(0,2)$ is on the circle
11 (iii)	$\operatorname{grad} A C^{\prime}$ or $\mathrm{AB}=-4 / 3$ o.e. $\operatorname{grad} \operatorname{tgt}=-1 /$ their AC^{\prime} grad $y-(-6)=$ their $m(x-6)$ o.e. $y=0.75 x-10.5$ o.e. isw	M1 M1 M1 A1	or ft from their C^{\prime}, must be evaluated may be seen in eqn for tgt; allow M2 for $\operatorname{grad} \operatorname{tgt}=3 / 4$ oe soi as first step or M1 for $y=$ their $m \times x+c$ then subst (6, -6) eg A1 for $4 y=3 x-42$ allow B4 for correct equation www isw
11 (iv)	centre C is at $(12,-14)$ cao circle is $(x-12)^{2}+(y+14)^{2}=100$	$\begin{aligned} & \text { B2 } \\ & \text { B1 } \end{aligned}$	B1 for each coord ft their C if at least one coord correct

12 (i)	10	1	
12 (ii)	$[x=] 5 \text { or } \mathrm{ft} \text { their (i) } \div 2$ $\mathrm{ht}=5[\mathrm{~m}] \mathrm{cao}$		not necessarily ft from (i) eg they may start again with calculus to get $x=5$
12 (iii)	$\begin{aligned} & d=7 / 2 \text { o.e. } \\ & {[y=] 1 / 5 \times 3.5 \times(10-3.5) \text { o.e. or } \mathrm{ft}} \\ & =91 / 20 \text { o.e. cao isw } \end{aligned}$	M1 M1 A1	or ft their (ii) -1.5 or their (i) $\div 2-1.5$ o.e. or $7-1 / 5 \times 3.5^{2}$ or ft or showing $y-4=11 / 20$ o.e. cao
12 (iv)	$\begin{aligned} & 4.5=1 / 5 \times x(10-x) \text { o.e. } \\ & 22.5=x(10-x) \text { o.e. } \\ & 2 x^{2}-20 x+45[=0] \text { o.e. eg } \\ & x^{2}-10 x+22.5[=0] \text { or }(x-5)^{2}=2.5 \\ & {[x=] \frac{20 \pm \sqrt{40}}{4} \text { or } 5 \pm \frac{1}{2} \sqrt{10} \text { o.e. }} \end{aligned}$ $\text { width }=\sqrt{10} \text { o.e. eg } 2 \sqrt{2.5} \text { cao }$	M1 M1 A1 M1 A1	eg $4.5=x(2-0.2 x)$ etc cao; accept versions with fractional coefficients of x^{2}, isw or $x-5=[\pm] \sqrt{2.5}$ o.e.; ft their quadratic eqn provided at least M1 gained already; condone one error in formula or substitution; need not be simplified or be real accept simple equivalents only

4752 (C2) Concepts for Advanced Mathematics

1		$1 / 2 x^{2}+3 x^{-1}+c$ o.e.	3	1 for each term	3
2	(i) (ii)	5 with valid method 165 www	1 2	eg sequence has period of 4 nos. M1 for $13 \times(1+3+5+3)+1+3+5$ or for $14 \times(1+3+5+3)-3$	3
3		rt angled triangle with $\sqrt{ } 2$ on one side and 3 on hyp Pythag. used to obtain remaining side $=\sqrt{ } 7$ $\tan \theta=\frac{o p p}{a d j}=\frac{\sqrt{2}}{\sqrt{7}}$ o.e.	1 1 1	or M1 for $\cos ^{2} \theta=1-\sin ^{2} \theta$ used A1 for $\cos \theta=\frac{\sqrt{7}}{\sqrt{9}}$ A1 for $\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\sqrt{2}}{\sqrt{7}}$ o.e.	3
4		radius $=6.5[\mathrm{~cm}]$	3	M1 for $1 / 2 \times r^{2} \times 0.4[=8.45]$ o.e. and M1 for $r^{2}=\frac{169}{4}$ o.e. $[=42.25]$	3
5	(i) (ii)	sketch of correct shape with P ($-0.5,2$) $\mathrm{Q}(0,4)$ and $\mathrm{R}(2,2)$ sketch of correct shape with $P(-1,0.5) \quad Q(0,1)$ and $R(4,0.5)$	2 2	1 if Q and one other are correct 1 if Q and one other are correct	4
6	(i) (ii)	205 $\frac{25}{3}$ o.e.	3 2	M1 for AP identified with $d=4$ and M1 for $5+50 d$ used M1 for $r=\frac{2}{5}$ o.e.	5
7	(i) (ii)	$\begin{aligned} & \frac{\sin \mathrm{A}}{5.6}=\frac{\sin 79}{8.4} \text { s.o.i. } \\ & {[\mathrm{A}=] 40.87 \text { to } 41} \\ & {\left[\mathrm{BC}^{2}=\right] 5.6^{2}+7.8^{2}-2 \times 5.6 \times 7.8 \times} \\ & \cos \left({ }^{(" 180-79 ")}\right. \\ & =108.8 \text { to } 108.9 \\ & {[\mathrm{BC}=] 10.4(\ldots)} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$		5
8		$\begin{aligned} & y^{\prime}=3 x^{-\frac{1}{2}} \\ & 3 / 4 \text { when } x=16 \\ & y=24 \text { when } x=16 \\ & y-\text { their } 24=\text { their } 3 / 4(x-16) \\ & y-24=3 / 4(x-16) \text { o.e. } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	condone if unsimplified dependent on $\frac{\mathrm{d} y}{\mathrm{~d} x}$ used for m	5

\begin{tabular}{|c|c|c|c|c|c|}
\hline 9 \& \begin{tabular}{l}
(i) \\
(ii)
\end{tabular} \&
\[
\begin{aligned}
\& 2 x+1=\frac{\log 10}{\log 13} \text { o.e. } \\
\& {[x=] 0.55}
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline \text { G1 } \\
\& \text { DG1 } \\
\& \\
\& \text { M1 } \\
\& \text { A2 }
\end{aligned}
\] \& \begin{tabular}{l}
for curve of correct shape in both quadrants \\
must go through \((0,1)\) shown \\
or M1 for \(2 x+1=\log _{3} 10\) \\
A1 for other versions of \(0.547 \ldots\) or 0.548
\end{tabular} \& 5 \\
\hline 10 \& \begin{tabular}{l}
(i) \\
(ii) \\
(iii)
\end{tabular} \& \[
\begin{aligned}
\& 3 x^{2}-6 x-9 \\
\& \text { use of their } y^{\prime}=0 \\
\& x=-1 \\
\& x=3 \\
\& \text { valid method for determining nature } \\
\& \text { of turning point } \\
\& \text { max at } x=-1 \text { and min at } x=3 \\
\& x\left(x^{2}-3 x-9\right) \\
\& \frac{3 \pm \sqrt{45}}{2} \text { or }\left(x-\frac{3}{2}\right)^{2}=9+\frac{9}{4} \\
\& 0, \frac{3}{2} \pm \frac{\sqrt{45}}{2} \text { o.e. } \\
\& \text { sketch of cubic with two turning } \\
\& \text { points correct way up } \\
\& x \text {-intercepts }- \text { negative, } 0, \text { positive } \\
\& \text { shown }
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
A1 \\
M1 \\
A1 \\
M1 \\
M1 \\
A1 \\
G1 \\
DG1
\end{tabular} \& c.a.o. \& 6

3

2

\hline 11 \& | (i) |
| :--- |
| (ii) |
| (iii) |
| (iv) | \& | $47.625\left[\mathrm{~m}^{2}\right]$ to 3 sf or more, with correct method shown 43.05 $-0.013 x^{4} / 4+0.16 x^{3} / 3-0.082 x^{2} / 2+$ $2.4 x$ o.e. their integral evaluated at $x=12$ (and 0) only $47.6 \text { to } 47.7$ |
| :--- |
| 5.30.. found compared with 5.2 s.o.i. | \& | 4 |
| :--- |
| 2 |
| M2 |
| M1 |
| A1 |
| 1 |
| D1 | \& | $\begin{aligned} & \text { M3 for } \frac{1.5}{2} \times(2.3+2+2[2.7+3.3+4+ \\ & 4.8+5.2+5.2+4.4]) \end{aligned}$ |
| :--- |
| M1 for $1.5 \times(2.3+2.7+3.3+4+4.8+5.2+4.4+2)$ |
| M1 for three terms correct dep on integration attempted | \& 2

4
2

\hline 12 \& | (i) |
| :--- |
| (ii) | \& \[

$$
\begin{aligned}
& \log P=\log a+b t \quad \text { www } \\
& \text { comparison with } y=m x+c \text { s.o.i. } \\
& \text { intercept }=\log _{10} a \\
& {[2.12,2.21], 2.32,2.44,2.57,2.69} \\
& \text { plots } \mathrm{ft} \\
& \text { ruled line of best fit }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
$$

\] \& | must be with correct equation dependent on correct equation |
| :--- |
| Between (10, 2.08) and (10, 2.12) | \& 3

\hline
\end{tabular}

(iii)	$0.0100 \leq \mathrm{m}<0.0125$	B2	$\text { M1 for } \frac{y-\text { step }}{x-\text { step }}$	
	$\begin{aligned} & \mathrm{a}=10^{\mathrm{c}} \text { or } \log \mathrm{a}=\mathrm{c} \\ & P=10^{\mathrm{c}} \times 10^{\mathrm{mt} t} \text { or } 10^{\mathrm{m} t+\mathrm{c}} \end{aligned}$	B1 B1	$1.96 \leq \mathrm{c} \leq 2.02$ f.t. their m and a	4
(iv)	use of $t=105$ $1.0-2.0$ billion approx unreliable since extrapolation o.e.	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { E1 } \end{aligned}$		3

4753 (C3) Methods for Advanced Mathematics

$\text { 4(i) } \quad \begin{aligned} \int_{0}^{1} \frac{2 x}{x^{2}+1} \mathrm{~d} x & =\left[\ln \left(x^{2}+1\right)\right]_{0}^{1} \\ & =\ln 2 \end{aligned}$	$\begin{aligned} & \text { M2 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	$\left[\ln \left(x^{2}+1\right)\right]$ cao (must be exact)
$\begin{aligned} \text { or } & \quad \text { let } u=x^{2} \\ \Rightarrow \quad \int_{0}^{1} \frac{2 x}{x^{2}+1} \mathrm{~d} x & =\int_{1}^{2} \frac{1}{u} \mathrm{~d} u \\ & =[\ln u]_{1}^{2} \\ & =\ln 2 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \\ & \text { A1 } \\ & {[3]} \end{aligned}$	$\int \frac{1}{u} \mathrm{~d} u$ or $\left[\ln \left(1+x^{2}\right)\right]_{0}^{1}$ with correct limits cao (must be exact)
$\text { (ii) } \begin{aligned} \int_{0}^{1} \frac{2 x}{x+1} \mathrm{~d} x & =\int_{0}^{1} \frac{2 x+2-2}{x+1} \mathrm{~d} x=\int_{0}^{1}\left(2-\frac{2}{x+1}\right) \mathrm{d} x \\ & =[2 x-2 \ln (x+1)]_{0}^{1} \\ & =2-2 \ln 2 \end{aligned}$	M1 A1, A1 A1 A1 [5]	$\begin{aligned} & \text { dividing by }(x+1) \\ & 2,-2 /(x+1) \end{aligned}$
$\text { or } \begin{aligned} \int_{0}^{1} & \frac{2 x}{x+1} \mathrm{~d} x \text { let } u=x+1, \Rightarrow \mathrm{~d} u=\mathrm{d} x \\ & =\int_{1}^{2} \frac{2(u-1)}{u} \mathrm{~d} u \\ & =\int_{1}^{2}\left(2-\frac{2}{u}\right) \mathrm{d} u \\ & =[2 u-2 \ln u]_{1}^{2} \\ & =4-2 \ln 2-(2-2 \ln 1) \\ & =2-2 \ln 2 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[5]} \end{aligned}$	substituting $u=x+1$ and $\mathrm{d} u=\mathrm{d} x$ (or $\mathrm{d} u / \mathrm{d} x=1$) and correct limits used for u or x $2(u-1) / u$ dividing through by u $2 u-2 \ln u$ allow ft on $(u-1) / u$ (i.e. with 2 omitted) o.e. cao (must be exact)
5 (i) $a=0, b=3, c=2$	B $(2,1,0)$	or $a=0, b=-3, c=-2$
(ii) $a=1, b=-1, c=1$ or $a=1, b=1, c=-1$	$\begin{aligned} & \mathrm{B}(2,1,0) \\ & {[4]} \end{aligned}$	
$\begin{aligned} 6 & \left.\begin{array}{rl} \mathrm{f}(-x)=-\mathrm{f}(x), \mathrm{g}(-x)=\mathrm{g}(x) \\ & \mathrm{g} \mathrm{f}(-x) \end{array}\right)=\mathrm{g}[-\mathrm{f}(x)] \\ & =\operatorname{g~f}(x) \end{aligned} \quad \begin{aligned} & \\ & \Rightarrow \mathrm{g} \mathrm{f} \text { is even } \end{aligned}$	$\begin{aligned} & \text { B1B1 } \\ & \text { M1 } \\ & \\ & \text { E1 } \\ & {[4]} \end{aligned}$	condone f and g interchanged forming $\operatorname{gf}(-x)$ or $\operatorname{gf}(x)$ and using $\mathrm{f}(-x)=-\mathrm{f}(x)$ www
$\begin{array}{\|ll} 7 & \text { Let } \arcsin x=\theta \\ \Rightarrow & x=\sin \theta \\ & \theta=\arccos y \Rightarrow y=\cos \theta \\ & \sin ^{2} \theta+\cos ^{2} \theta=1 \\ \Rightarrow & x^{2}+y^{2}=1 \end{array}$	M1 M1 E1 [3]	

$\begin{array}{ll} \text { 8(i) } & \text { At } \mathrm{P}, x \cos 3 x=0 \\ \Rightarrow & \cos 3 x=0 \\ \Rightarrow & 3 x=\pi / 2,3 \pi / 2 \\ \Rightarrow & x=\pi / 6, \pi / 2 \\ & \text { So } \mathrm{P} \text { is }(\pi / 6,0) \text { and } \mathrm{Q} \text { is }(\pi / 2,0) \end{array}$	M1 M1 A1 A1 [4]	or verification $3 x=\pi / 2,(3 \pi / 2 \ldots)$ dep both Ms condone degrees here
$\begin{aligned} & \text { (ii) } \frac{d y}{d x}=-3 x \sin 3 x+\cos 3 x \\ & \qquad \text { At } \mathrm{P}, \frac{d y}{d x}=-\frac{\pi}{2} \sin \frac{\pi}{2}+\cos \frac{\pi}{2}=-\frac{\pi}{2} \\ & \text { At TPs } \frac{d y}{d x}=-3 x \sin 3 x+\cos 3 x=0 \\ & \Rightarrow \quad \cos 3 x=3 x \sin 3 x \\ & \Rightarrow \quad 1=3 x \sin 3 x / \cos 3 x=3 x \tan 3 x \\ & \Rightarrow \quad x \tan 3 x=1 / 3 * \end{aligned}$	M1 B1 A1 M1 A1cao M1 E1 [7]	Product rule $\mathrm{d} / \mathrm{d} x(\cos 3 x)=-3 \sin 3 x$ cao (so for $\mathrm{d} y / \mathrm{d} x=-3 x \sin 3 x$ allow B1) mark final answer substituting their $-\pi / 6$ (must be rads) $-\pi / 2$ $\mathrm{d} y / \mathrm{d} x=0$ and $\sin 3 x / \cos 3 x=\tan 3 x$ used www
$\text { (iii) } \begin{aligned} & A=\int_{0}^{\pi / 6} x \cos 3 x d x \\ & \text { Parts with } u=x, \mathrm{~d} v / \mathrm{d} x=\cos 3 x \\ & \mathrm{~d} u / \mathrm{d} x=1, v=1 / 3 \sin 3 x \\ & \Rightarrow \quad A=\left[\frac{1}{3} x \sin 3 x\right]_{0}^{\frac{\pi}{6}}-\int_{0}^{\pi / 6} \frac{1}{3} \sin 3 x d x \\ &=\left[\frac{1}{3} x \sin 3 x+\frac{1}{9} \cos 3 x\right]_{0}^{\frac{\pi}{6}} \\ &=\frac{\pi}{18}-\frac{1}{9} \end{aligned}$	B1 M1 A1 A1 M1dep A1 cao [6]	Correct integral and limits (soi) - ft their P , but must be in radians can be without limits dep previous A1. substituting correct limits, dep $1^{\text {st }} \mathrm{M} 1$: ft their P provided in radians o.e. but must be exact

$\begin{aligned} & \text { 9(i) } \quad \mathrm{f}^{\prime}(x)=\frac{\left(x^{2}+1\right) 4 x-\left(2 x^{2}-1\right) 2 x}{\left(x^{2}+1\right)^{2}} \\ &=\frac{4 x^{3}+4 x-4 x^{3}+2 x}{\left(x^{2}+1\right)^{2}}=\frac{6 x}{\left(x^{2}+1\right)^{2}} * \\ & \Rightarrow \quad \text { When } x>0,6 x>0 \text { and }\left(x^{2}+1\right)^{2}>0 \\ & \Rightarrow \quad \mathrm{f}^{\prime}(x)>0 \end{aligned}$	M1 A1 E1 M1 E1 [5]	Quotient or product rule correct expression www attempt to show or solve $\mathrm{f}^{\prime}(x)>0$ numerator >0 and denominator >0 or, if solving, $6 x>0 \Rightarrow x>0$
(ii) $\mathrm{f}(2)=\frac{8-1}{4+1}=1 \frac{2}{5}$ Range is $-1 \leq y \leq 1 \frac{2}{5}$	B1 B1 [2]	must be \leq, y or $\mathrm{f}(x)$
$\begin{array}{ll} \text { (iii) } & \mathrm{f}^{\prime}(x) \max \text { when } \mathrm{f}^{\prime \prime}(x)=0 \\ \Rightarrow & 6-18 x^{2}=0 \\ \Rightarrow & x^{2}=1 / 3, x=1 / \sqrt{ } 3 \\ \Rightarrow & \mathrm{f}^{\prime}(x)=\frac{6 / \sqrt{3}}{\left(1 \frac{1}{3}\right)^{2}}=\frac{6}{\sqrt{3}} \cdot \frac{9}{16}=\frac{9 \sqrt{3}}{8}=1.95 \end{array}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ {[4]} \end{gathered}$	$(\pm) 1 / \sqrt{ } 3$ oe $(0.577$ or better $)$ substituting $1 / \sqrt{ } 3$ into $\mathrm{f}^{\prime}(x)$ $9 \sqrt{ } 3 / 8$ o.e. or 1.95 or better (1.948557..)
(iv) Domain is $-1<x<1 \frac{2}{5}$ Range is $0 \leq y \leq 2$	B1 B1 M1 A1 cao [4]	ft their 1.4 but not $x \geq-1$ or $0 \leq \mathrm{g}(x) \leq 2($ not f$)$ Reasonable reflection in $y=x$ from $(-1,0)$ to $(1.4,2)$, through $(0, \sqrt{ } 2 / 2)$ allow omission of one of $-1,1.4,2, \sqrt{ } 2 / 2$
$\begin{array}{ll} \text { (v) } & y=\frac{2 x^{2}-1}{x^{2}+1} \quad x \leftrightarrow y \\ & x=\frac{2 y^{2}-1}{y^{2}+1} \\ \Rightarrow & x y^{2}+x=2 y^{2}-1 \\ \Rightarrow & x+1=2 y^{2}-x y^{2}=y^{2}(2-x) \\ \Rightarrow & y^{2}=\frac{x+1}{2-x} \\ \Rightarrow & y=\sqrt{\frac{x+1}{2-x}} * \end{array}$	M1 M1 M1 E1 [4]	(could start from g) Attempt to invert clearing fractions collecting terms in y^{2} and factorising www

4754 (C4) Applications of Advanced Mathematics

1		$\begin{aligned} & \frac{1+2 x}{(1-2 x)^{2}}=(1+2 x)(1-2 x)^{-2} \\ & =(1+2 x)\left[1+(-2)(-2 x)+\frac{(-2)(-3)}{1.2}(-2 x)^{2}+\ldots\right] \\ & =(1+2 x)\left[1+4 x+12 x^{2}+\ldots\right] \\ & =1+4 x+12 x^{2}+2 x+8 x^{2}+\ldots \\ & =1+6 x+20 x^{2}+\ldots \end{aligned}$ Valid for $-1<-2 x<1$ $\Rightarrow-1 / 2<x<1 / 2$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[7]} \end{aligned}$	binomial expansion power -2 unsimplified,correct sufficient terms
2		$\begin{array}{ll} & \tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta} \\ \Rightarrow \quad & \cot 2 \theta=\frac{1}{\tan 2 \theta}=\frac{1-\tan ^{2} \theta}{2 \tan \theta} * \\ & \cot 2 \theta=1+\tan \theta \\ \Rightarrow \quad & \frac{1-\tan ^{2} \theta}{2 \tan \theta}=1+\tan \theta \\ \Rightarrow \quad & 1-\tan ^{2} \theta=2 \tan \theta+2 \tan ^{2} \theta \\ \Rightarrow \quad & 3 \tan ^{2} \theta+2 \tan \theta-1=0 \\ \Rightarrow \quad & (3 \tan \theta-1)(\tan \theta+1)=0 \\ \Rightarrow \quad & \tan \theta=1 / 3, \theta=18.43^{\circ}, 198.43^{\circ} \\ & \text { or } \tan \theta=-1, \theta=135^{\circ}, 315^{\circ} \end{array}$	M1 E1 M1 M1 A3,2,1, 0 [7]	oe eg converting either side into a one line fraction(s) involving $\sin \theta$ and $\cos \theta$. quadratic $=0$ factorising or solving $18.43^{\circ}, 198.43^{\circ}, 135^{\circ}, 315^{\circ}$ -1 extra solutions in the range
3	(i)	$\begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} t} & =\frac{(1+t) \cdot 2-2 t \cdot 1}{(1+t)^{2}}=\frac{2}{(1+t)^{2}} \\ \frac{\mathrm{~d} x}{\mathrm{~d} t} & =2 \mathrm{e}^{2 t} \\ \frac{\mathrm{~d} y}{\mathrm{~d} x} & =\frac{\mathrm{d} y / \mathrm{d} t}{\mathrm{~d} x / \mathrm{d} t} \\ \Rightarrow \quad \frac{\mathrm{~d} y}{\mathrm{~d} x} & =\frac{2}{(1+t)^{2}} \\ 2 \mathrm{e}^{2 t} & =\frac{1}{\mathrm{e}^{2 t}(1+t)^{2}} \\ t & =0 \Rightarrow \mathrm{~d} y / \mathrm{d} x=1 \end{aligned}$	$\begin{aligned} & \text { M1A1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { B1ft } \\ & {[6]} \end{aligned}$	

	(ii)	$\Rightarrow \quad \begin{aligned} 2 t & =\ln x \Rightarrow t=1 / 2 \ln x \\ y & =\frac{\ln x}{1+\frac{1}{2} \ln x}=\frac{2 \ln x}{2+\ln x} \end{aligned}$	M1 A1 [2]	or t in terms of y
4	(i)	$\overrightarrow{\mathrm{AB}}=\left(\begin{array}{l}-2 \\ -1 \\ -1\end{array}\right), \overrightarrow{\mathrm{AC}}=\left(\begin{array}{l}-1 \\ -11 \\ 3\end{array}\right)$	B1 B1 [2]	
	(ii)	$\begin{aligned} & \mathbf{n} \cdot \overrightarrow{\mathrm{AB}}=\left(\begin{array}{l} 2 \\ -1 \\ -3 \end{array}\right) \cdot\left(\begin{array}{l} -2 \\ -1 \\ -1 \end{array}\right)=-4+1+3=0 \\ & \mathbf{n} \cdot \overrightarrow{\mathrm{AC}}=\left(\begin{array}{l} 2 \\ -1 \\ -3 \end{array}\right) \cdot\left(\begin{array}{l} -1 \\ -11 \\ 3 \end{array}\right)=-2+11-9=0 \\ & \Rightarrow \quad \text { plane is } 2 x-y-3 z=d \\ & x=1, y=3, z=-2 \Rightarrow d=2-3+6=5 \\ & \Rightarrow \quad \text { plane is } 2 x-y-3 z=5 \end{aligned}$	M1 E1 E1 M1 A1 [5]	scalar product
5	(i)	$\begin{aligned} & x=-5+3 \lambda=1 \Rightarrow \lambda=2 \\ & y=3+2 \times 0=3 \\ & z=4-2=2, \text { so }(1,3,2) \text { lies on } 1 \text { st line. } \\ & x=-1+2 \mu=1 \Rightarrow \mu=1 \\ & y=4-1=3 \\ & z=2+0=2, \text { so }(1,3,2) \text { lies on } 2^{\text {nd }} \text { line. } \end{aligned}$	M1 E1 E1 [3]	finding λ or μ verifying two other coordinates for line 1 verifying two other coordinates for line 2
	(ii)	$\begin{aligned} & \text { Angle between }\left(\begin{array}{l} 3 \\ 0 \\ -1 \end{array}\right) \text { and }\left(\begin{array}{l} 2 \\ -1 \\ 0 \end{array}\right) \\ & \cos \theta=\frac{3 \times 2+0 \times(-1)+(-1) \times 0}{\sqrt{10} \sqrt{5}} \\ & \Rightarrow \quad \theta=31.9^{\circ} \end{aligned}$	M1 M1 A1 A1 [4]	direction vectors only allow M1 for any vectors or 0.558 radians

6	(i)		B1 M1 E1 [3]	
	(ii)	$\begin{aligned} h & =a \sin \theta+b \sin \left(\theta-60^{\circ}\right) \\ & =a \sin \theta+b(\sin \theta \cos 60-\cos \theta \sin 60) \\ & =a \sin \theta+1 / 2 b \sin \theta-\sqrt{3} / 2 b \cos \theta \\ & =\left(a+\frac{1}{2} b\right) \sin \theta-\frac{\sqrt{3}}{2} b \cos \theta * \end{aligned}$	M1 M1 E1 [3]	corr compound angle formula $\sin 60=\sqrt{ } 3 / 2, \cos 60=1 / 2$ used
	(iii)	$\begin{array}{ll} & \text { OB horizontal when } h=0 \\ \Rightarrow \quad & \left(a+\frac{1}{2} b\right) \sin \theta-\frac{\sqrt{3}}{2} b \cos \theta=0 \\ \Rightarrow \quad & \left(a+\frac{1}{2} b\right) \sin \theta=\frac{\sqrt{3}}{2} b \cos \theta \\ \Rightarrow \quad & \frac{\sin \theta}{\cos \theta}=\frac{\frac{\sqrt{3}}{2} b}{a+\frac{1}{2} b} \\ \Rightarrow \quad & \tan \theta=\frac{\sqrt{3} b}{2 a+b} * \end{array}$	M1 M1 E1 [3]	$\frac{\sin \theta}{\cos \theta}=\tan \theta$
	(iv)	$\begin{array}{ll} & 2 \sin \theta-\sqrt{3} \cos \theta=R \sin (\theta-\alpha) \\ & =R(\sin \theta \cos \alpha-\cos \theta \sin \alpha) \\ \Rightarrow \quad & R \cos \alpha=2, R \sin \alpha=\sqrt{ } 3 \\ \Rightarrow \quad & R^{2}=2^{2}+(\sqrt{ } 3)^{2}=7, R=\sqrt{ } 7=2.646 \mathrm{~m} \\ & \tan \alpha=\sqrt{ } 3 / 2, \alpha=40.9^{\circ} \\ & \quad \operatorname{So} h=\sqrt{ } 7 \sin \left(\theta-40.9^{\circ}\right) \\ \Rightarrow \quad & h_{\max }=\sqrt{ } 7=2.646 \mathrm{~m} \\ \Rightarrow \quad & \text { when } \theta-40.9^{\circ}=90^{\circ} \\ \Rightarrow \quad & \theta=130.9^{\circ} \end{array}$	M1 B1 M1A1 B1ft M1 A1 [7]	

7	(i)	$\begin{aligned} & \frac{\mathrm{d} x}{\mathrm{~d} t}=-1\left(1+\mathrm{e}^{-t}\right)^{-2} \cdot-\mathrm{e}^{-t} \\ &=\frac{\mathrm{e}^{-t}}{\left(1+\mathrm{e}^{-t}\right)^{2}} \\ & 1-x=1-\frac{1}{1+\mathrm{e}^{-t}} \\ & 1-x=\frac{1+\mathrm{e}^{-t}-1}{1+\mathrm{e}^{-t}}=\frac{\mathrm{e}^{-t}}{1+\mathrm{e}^{-t}} \\ & \Rightarrow \quad x(1-x)=\frac{1}{1+\mathrm{e}^{-t}} \frac{\mathrm{e}^{-t}}{1+\mathrm{e}^{-t}}=\frac{\mathrm{e}^{-t}}{\left(1+\mathrm{e}^{-t}\right)^{2}} \\ & \Rightarrow \quad \frac{d x}{d t}=x(1-x) \end{aligned}$ When $t=0, x=\frac{1}{1+\mathrm{e}^{0}}=0.5$	M1 A1 M1 A1 E1 B1 [6]	chain rule substituting for $x(1-x)$ $1-x=\frac{1+\mathrm{e}^{-t}-1}{1+\mathrm{e}^{-t}}=\frac{\mathrm{e}^{-t}}{1+\mathrm{e}^{-t}}$ [OR,M1 A1 for solving differential equation for t, B1 use of initial condition, M1 A1 making x the subject, E1 required form]
	(ii)	$\begin{aligned} & \frac{1}{\left(1+\mathrm{e}^{-t}\right)}=\frac{3}{4} \\ \Rightarrow \quad & \mathrm{e}^{-t}=1 / 3 \\ \Rightarrow \quad & t=-\ln 1 / 3=1.10 \text { years } \end{aligned}$	M1 M1 A1 [3]	correct log rules
	(iii)	$\begin{gathered} \quad \frac{1}{x^{2}(1-x)}=\frac{A}{x^{2}}+\frac{B}{x}+\frac{C}{1-x} \\ \Rightarrow \quad 1=A(1-x)+B x(1-x)+C x^{2} \\ x=0 \Rightarrow A=1 \\ x=1 \Rightarrow C=1 \\ \text { coefft of } x^{2}: 0=-B+C \Rightarrow B=1 \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { B(2,1,0) } \\ & {[4]} \end{aligned}$	clearing fractions substituting or equating coeffs for A, B or C $A=1, B=1, C=1 \mathrm{www}$
	(iv)	$\begin{aligned} & \int \frac{\mathrm{d} x}{x^{2}(1-x)} \mathrm{d} x=\int \mathrm{d} t \\ \Rightarrow \quad t & =\int\left(\frac{1}{x^{2}}+\frac{1}{x}+\frac{1}{1-x}\right) \mathrm{d} x \\ & =-1 / x+\ln x-\ln (1-x)+c \\ & \text { When } t=0, x=1 / 2 \Rightarrow 0=-2+\ln 1 / 2-\ln 1 / 2+c \\ \Rightarrow \quad c & =2 . \\ \Rightarrow \quad t & =-1 / x+\ln x-\ln (1-x)+2 \\ & =2+\ln \frac{x}{1-x}-\frac{1}{x} * \end{aligned}$	M1 B1 B1 M1 E1 [5]	separating variables $-1 / x+\ldots$ $\ln x-\ln (1-x)$ ft their A,B,C substituting initial conditions
	(v)	$t=2+\ln \frac{3 / 4}{1-3 / 4}-\frac{1}{3 / 4}=\ln 3+\frac{2}{3}=1.77 \mathrm{yrs}$	$\begin{aligned} & \text { M1A1 } \\ & {[2]} \\ & \hline \end{aligned}$	

$\mathbf{1}$	15	B1	
$\mathbf{2}$	THE MATHEMATICIAN	B1	
$\mathbf{3}$	M H X I Q 3 or 4 correct - award 1 mark	B2	
$\mathbf{4}$	Two from Ciphertext N has high frequency E would then correspond to ciphertext R which also has high frequency T would then correspond to ciphertext G which also has high frequency A is preceded by a string of six letters displaying low frequency	B1	B1

4755 (FP1) Further Concepts for Advanced Mathematics

1	$\alpha \beta=(-3+\mathrm{j})(5-2 \mathrm{j})=-13+11 \mathrm{j}$ $\frac{\alpha}{\beta}=\frac{-3+\mathrm{j}}{5-2 \mathrm{j}}=\frac{(-3+\mathrm{j})(5+2 \mathrm{j})}{29}=\frac{-17}{29}-\frac{1}{29} \mathrm{j}$	M1 A1 [2] M1 A1 A1 [3]	Use of $\mathrm{j}^{2}=-1$ Use of conjugate 29 in denominator All correct
2 (i) (ii)	$\mathbf{A B}$ is impossible $\begin{aligned} & \mathbf{C A}=(50) \\ & \mathbf{B}+\mathbf{D}=\left(\begin{array}{cc} 3 & 1 \\ 6 & -2 \end{array}\right) \\ & \mathbf{A C}=\left(\begin{array}{ccc} 20 & 4 & 32 \\ -10 & -2 & -16 \\ 20 & 4 & 32 \end{array}\right) \end{aligned}$ $\mathbf{D B}=\left(\begin{array}{cc} -2 & 0 \\ 4 & 1 \end{array}\right)\left(\begin{array}{cc} 5 & 1 \\ 2 & -3 \end{array}\right)=\left(\begin{array}{cc} -10 & -2 \\ 22 & 1 \end{array}\right)$	B1 B1 B1 B2 [5] M1 A1 [2]	-1 each error Attempt to multiply in correct order c.a.o.
3	$\begin{aligned} & \alpha+\beta+\gamma=a-d+a+a+d=\frac{12}{4} \Rightarrow a=1 \\ & (a-d) a(a+d)=\frac{3}{4} \Rightarrow d= \pm \frac{1}{2} \end{aligned}$ So the roots are $\frac{1}{2}, 1$ and $\frac{3}{2}$ $\alpha \beta+\alpha \gamma+\beta \gamma=\frac{k}{4}=\frac{11}{4} \Rightarrow k=11$	M1 A1 M1 A1 M1 A1 [6]	Valid attempt to use sum of roots $a=1$, c.a.o. Valid attempt to use product of roots All three roots Valid attempt to use $\alpha \beta+\alpha \gamma+\beta \gamma$, or to multiply out factors, or to substitute a root $k=11 \mathrm{c} . \mathrm{a} . \mathrm{o} .$

4	$\begin{aligned} & \mathbf{M M}^{-1}=\frac{1}{k}\left(\begin{array}{ccc} 4 & 0 & 1 \\ -6 & 1 & 1 \\ 5 & 2 & 5 \end{array}\right)\left(\begin{array}{ccc} -3 & -2 & 1 \\ -35 & -15 & 10 \\ 17 & 8 & -4 \end{array}\right) . \\ & =\frac{1}{k}\left(\begin{array}{lll} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{array}\right) \Rightarrow k=5 \\ & \left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\frac{1}{5}\left(\begin{array}{ccc} -3 & -2 & 1 \\ -35 & -15 & 10 \\ 17 & 8 & -4 \end{array}\right)\left(\begin{array}{c} 9 \\ 32 \\ 81 \end{array}\right) \\ & \frac{1}{5}\left(\begin{array}{ccc} -3 & -2 & 1 \\ -35 & -15 & 10 \\ 17 & 8 & -4 \end{array}\right)\left(\begin{array}{c} 9 \\ 32 \\ 81 \end{array}\right)=\frac{1}{5}\left(\begin{array}{c} -10 \\ 15 \\ 85 \end{array}\right) \\ & \Rightarrow x=-2, y=3, z=17 \end{aligned}$	M1 A1 [2] M1 M1 A1 A1 [4]	Attempt to consider $\mathbf{M M}^{-1}$ or $\mathbf{M}^{-1} \mathbf{M}$ (may be implied) c.a.o. Attempt to pre-multiply by \mathbf{M}^{-1} Attempt to multiply matrices Correct All 3 correct s.c. B1 if matrices not used
5	$\begin{aligned} & \sum_{r=1}^{n}(r+2)(r-3)=\sum_{r=1}^{n}\left(r^{2}-r-6\right) \\ & =\sum_{r=1}^{n} r^{2}-\sum_{r=1}^{n} r-6 n \\ & =\frac{1}{6} n(n+1)(2 n+1)-\frac{1}{2} n(n+1)-6 n \\ & =\frac{1}{6} n[(n+1)(2 n+1)-3(n+1)-36] \\ & =\frac{1}{6} n\left(2 n^{2}-38\right)=\frac{1}{3} n\left(n^{2}-19\right) \end{aligned}$	M1 A2 M1 A1 A1 [6]	Separate into 3 sums -1 each error Valid attempt to factorise (with n as a factor) Correct expression c.a.o. Complete, convincing argument
6	$\begin{aligned} & \text { When } n=1, \frac{n(n+1)(n+2)}{3}=2, \\ & \text { so true for } n=1 \\ & \text { Assume true for } n=k \\ & 2+6+\ldots . .+k(k+1)=\frac{k(k+1)(k+2)}{3} \\ & \Rightarrow 2+6+\ldots . .+(k+1)(k+2) \\ & =\frac{k(k+1)(k+2)}{3}+(k+1)(k+2) \\ & =\frac{1}{3}(k+1)(k+2)(k+3) \\ & =\frac{(k+1)((k+1)+1)((k+1)+2)}{3} \end{aligned}$ But this is the given result with $k+1$ replacing k. Therefore if it is true for $n=k$ it is true for $n=k+1$. Since it is true for $n=1$, it is true for $n=1,2,3$ and so true for all positive integers.	B1 E1 M1 A1 E1 E1 [6]	Assume true for k Add $(k+1)$ th term to both sides c.a.o. with correct simplification Dependent on A1 and previous E1 Dependent on B1 and previous E1

1 (a)	$\begin{aligned} & y=\arctan \sqrt{x} \\ & u=\sqrt{x}, y=\arctan u \\ & \Rightarrow \quad \frac{d u}{d x}=\frac{1}{2 \sqrt{x}}, \frac{d y}{d u}=\frac{1}{1+u^{2}} \\ & \Rightarrow \quad \frac{d y}{d x}=\frac{1}{1+u^{2}} \times \frac{1}{2 \sqrt{x}} \\ &=\frac{1}{1+x} \times \frac{1}{2 \sqrt{x}}=\frac{1}{2 \sqrt{x}(x+1)} \end{aligned}$		$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Using Chain Rule Correct derivative in any form Correct derivative in terms of x
	$\begin{aligned} & \text { OR } \quad \tan y=\sqrt{x} \\ & \Rightarrow \quad \sec ^{2} y \frac{d y}{d x}=\frac{1}{2 \sqrt{x}} \\ & \\ & \quad \sec ^{2} y=1+\tan ^{2} y=1+x \\ & \Rightarrow \quad \frac{d y}{d x}=\frac{1}{2 \sqrt{x}(x+1)} \end{aligned}$	M1A1 A1		Rearranging for \sqrt{x} or x and differentiating implicitly
	$\begin{aligned} \Rightarrow & \int_{0}^{1} \frac{1}{\sqrt{x}(x+1)} d x=[2 \arctan \sqrt{x}]_{0}^{1} \\ & =2 \arctan 1-2 \arctan 0 \\ & =2 \times \frac{\pi}{4}=\frac{\pi}{2} \end{aligned}$		$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~A} 1(\mathrm{ag}) \end{aligned}$	Integral in form $k \arctan \sqrt{x}$ $k=2$
(b)(i)	$\begin{aligned} & x=r \cos \theta, y=r \sin \theta, x^{2}+y^{2}=r^{2} \\ & x^{2}+y^{2}=x y+1 \\ \Rightarrow & r^{2}=r^{2} \cos \theta \sin \theta+1 \\ \Rightarrow & r^{2}=1 / 2 r^{2} \sin 2 \theta+1 \\ \Rightarrow & 2 r^{2}=r^{2} \sin 2 \theta+2 \\ \Rightarrow & r^{2}(2-\sin 2 \theta)=2 \\ \Rightarrow & r^{2}=\frac{2}{2-\sin 2 \theta} \end{aligned}$		$\begin{array}{\|ll\|} \hline \text { M1 } \\ \text { A1 } & \\ \text { A1 } & \\ & \\ & \\ & \\ \text { A1 (ag) } & \\ \hline & \\ \hline \end{array}$	Using at least one of these LHS RHS Clearly obtained SR: $x=r \sin \theta, y=r \cos \theta$ used M1A1A0A0 max.
(ii)	Max r is $\sqrt{2}$ Occurs when $\sin 2 \theta=1$ $\begin{aligned} & \Rightarrow \quad \theta=\frac{\pi}{4}, \frac{5 \pi}{4} \\ & \operatorname{Min} r=\sqrt{\frac{2}{3}} \end{aligned}$ Occurs when $\sin 2 \theta=-1$ $\Rightarrow \quad \theta=\frac{3 \pi}{4}, \frac{7 \pi}{4}$			Attempting to solve Both. Accept degrees. A0 if extras in range $\frac{\sqrt{6}}{3}$ Attempting to solve (must be -1) Both. Accept degrees. A0 if extras in range

(iii)	Mark Scheme		
		$\left\lvert\, \begin{array}{ll} \text { G1 } & \\ \text { G1 } & \\ & 2 \end{array}\right.$	Closed curve, roughly elliptical, with no points or dents Major axis along $y=x$
2 (a)	$\begin{aligned} & \cos 5 \theta+\mathrm{j} \sin 5 \theta=(\cos \theta+\mathrm{j} \sin \theta)^{5} \\ & =\cos ^{5} \theta+5 \cos ^{4} \theta \mathrm{j} \sin \theta+10 \cos ^{3} \theta \mathrm{j}^{2} \sin ^{2} \theta \\ & \quad+10 \cos ^{2} \theta \mathrm{j}^{3} \sin ^{3} \theta+5 \cos \theta \mathrm{j}^{4} \sin ^{4} \theta+\mathrm{j}^{5} \sin ^{5} \theta \\ & =\cos ^{5} \theta-10 \cos ^{3} \theta \sin ^{2} \theta+5 \cos \theta \sin ^{4} \theta+\mathrm{j}(\ldots) \\ & \cos ^{5} 5=\cos ^{5} \theta-10 \cos ^{3} \theta \sin ^{2} \theta+5 \cos \theta \sin ^{4} \theta \\ & =\cos ^{5} \theta-10 \cos ^{3} \theta\left(1-\cos ^{2} \theta\right)+5 \cos \theta\left(1-\cos ^{2} \theta\right)^{2} \\ & =16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta \end{aligned}$	M1 M1 A1 M1 M1 A1 6	Using de Moivre Using binomial theorem appropriately Correct real part. Must evaluate powers of j Equating real parts Replacing $\sin ^{2} \theta$ by $1-\cos ^{2} \theta$ $a=16, b=-20, c=5$
(b)	$C+\mathrm{j} S$ $=e^{\mathrm{j} \theta}+e^{j\left(\theta+\frac{2 \pi}{n}\right)}+\ldots+e^{j\left(\theta+\frac{(2 n-2) \pi}{n}\right)}$ This is a G.P. $\begin{aligned} & a=e^{\mathrm{j} \theta}, r=e^{\mathrm{j} \frac{2 \pi}{n}} \\ & \text { Sum }=\frac{e^{\mathrm{j} \theta}\left(1-\left(e^{\mathrm{j} \frac{2 \pi}{n}}\right)^{n}\right)}{1-e^{\frac{2 \pi}{n}}} \\ & \text { Numerator }=e^{\mathrm{j} \theta}\left(1-e^{2 \pi \mathrm{j}}\right) \text { and } e^{2 \pi \mathrm{j}}=1 \\ & \text { so sum }=0 \\ & \Rightarrow \quad C=0 \text { and } S=0 \end{aligned}$	A1 M1 A1 A1 E1 E1	Forming series $C+\mathrm{j} S$ as exponentials Need not see whole series Attempting to sum finite or infinite G.P. Correct a, r used or stated, and n terms Must see j Convincing explanation that sum $=0$ $C=S=0$. Dep. on previous E1 Both E marks dep. on 5 marks above
(c)	$\begin{aligned} & e^{t} \approx 1+t+\frac{1}{2} t^{2} \\ & \frac{t}{e^{t}-1} \approx \frac{t}{t+\frac{1}{2} t^{2}} \\ & \frac{t}{t+\frac{1}{2} t^{2}}=\frac{1}{1+\frac{1}{2} t}=\left(1+\frac{1}{2} t\right)^{-1}=1-\frac{1}{2} t+\ldots \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{M} 1 \end{aligned}$	Ignore terms in higher powers Substituting Maclaurin series Suitable manipulation and use of binomial theorem
	OR $\frac{1}{1+\frac{1}{2} t}=\frac{1}{1+\frac{1}{2} t} \times \frac{1-\frac{1}{2} t}{1-\frac{1}{2} t}=\frac{1-\frac{1}{2} t}{1-\frac{1}{4} t^{2}} \quad$ M1		
	Hence $\frac{t}{e^{t}-1} \approx 1-\frac{1}{2} t$	A1 (ag)	
	$\begin{array}{ll} \text { OR } \left.\begin{array}{ll} \left(e^{t}-1\right)\left(1-\frac{1}{2} t\right)=\left(t+\frac{1}{2} t^{2}+\ldots\right)\left(1-\frac{1}{2} t\right) & \text { M1 } \\ & \text { A1 } \\ & \approx t+\text { terms in } t^{3} \\ \Rightarrow \quad \frac{t}{e^{t}-1} \approx 1-\frac{1}{2} t & \text { M1 } \end{array}\right) \text { A1 } \end{array}$		Substituting Maclaurin series Correct expression Multiplying out Convincing explanation
		5	18

4 (i)	$\begin{aligned} \sinh x & =\frac{e^{x}-e^{-x}}{2} \Rightarrow \sinh ^{2} x=\frac{\left(e^{x}-e^{-x}\right)^{2}}{4} \\ & =\frac{e^{2 x}-2+e^{-2 x}}{4} \\ \Rightarrow & 2 \sinh ^{2} x+1=\frac{e^{2 x}-2+e^{-2 x}}{2}+1 \\ & =\frac{e^{2 x}+e^{-2 x}}{2}=\cosh 2 x \\ \Rightarrow & 2 \sinh 2 x=4 \sinh x \cosh x \\ \Rightarrow & \sinh 2 x=2 \sinh x \cosh x \end{aligned}$	B1 B1 B1 B1 4	$e^{2 x}-2+e^{-2 x}$ Correct completion Both correct derivatives Correct completion
(ii)	$\begin{aligned} & 2 \cosh 2 x+3 \sinh x=3 \\ \Rightarrow & 2\left(1+2 \sinh ^{2} x\right)+3 \sinh x=3 \\ \Rightarrow & 4 \sinh ^{2} x+3 \sinh x-1=0 \\ \Rightarrow & (4 \sinh x-1)(\sinh x+1)=0 \\ \Rightarrow & \sinh x=1 / 4,-1 \\ & \\ \Rightarrow & x=\operatorname{arsinh}(1 / 4)=\ln \left(\frac{1+\sqrt{17}}{4}\right) \\ & x=\operatorname{arsinh}(-1)=\ln (-1+\sqrt{2}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Using identity Correct quadratic Solving quadratic Both Use of arsinh $x=\ln \left(x+\sqrt{x^{2}+1}\right)$ o.e. Must obtain at least one value of x Must evaluate $\sqrt{x^{2}+1}$
	$\begin{array}{lll} \begin{array}{lll} \text { OR } & 2 e^{4 x}+3 e^{3 x}-6 e^{2 x}-3 e^{x}+2=0 & \\ \Rightarrow & \left(2 e^{2 x}-e^{x}-2\right)\left(e^{2 x}+2 e^{x}-1\right)=0 & \text { M1A1 } \\ \Rightarrow & e^{x}=\frac{1 \pm \sqrt{17}}{4} \text { or }-1 \pm \sqrt{2} & \text { M1A1 } \\ \Rightarrow & x=\ln \left(\frac{1+\sqrt{17}}{4}\right) \text { or } \ln (-1+\sqrt{2}) & \text { M1A1A1 } \end{array} \end{array}$		Factorising quartic Solving either quadratic Using \ln (dependent on first M1)
		7	
(iii)	$\begin{aligned} & \cosh t=\frac{5}{4} \Rightarrow \frac{e^{t}+e^{-t}}{2}=\frac{5}{4} \\ \Rightarrow & 2 e^{2 t}-5 e^{t}+2=0 \\ \Rightarrow & \left(2 e^{t}-1\right)\left(e^{t}-2\right)=0 \\ \Rightarrow & e^{t}=\frac{1}{2}, 2 \\ \Rightarrow & t= \pm \ln 2 \\ & \int_{4}^{5} \frac{1}{\sqrt{x^{2}-16}} d x=\left[\operatorname{arcosh} \frac{x}{4}\right]_{4}^{5} \\ & =\operatorname{arcosh} \frac{5}{4}-\operatorname{arcosh} 1 \\ & =\ln 2 \end{aligned}$	M1 M1 A1 A1 (ag) B1 M1 A1	Forming quadratic in e^{t} Solving quadratic Convincing working Substituting limits A0 for $\pm \ln 2$
	$\text { OR } \begin{align*} & \int_{4}^{5} \frac{1}{\sqrt{x^{2}-16}} d x=\left[\ln \left(x+\sqrt{x^{2}-16}\right)\right]_{4}^{5} \tag{B1}\\ & =\ln 8-\ln 4 \\ & =\ln 2 \end{align*}$		Substituting limits
		7	

5 (i)	Horz. projection of $\mathrm{QP}=k \cos \theta$ Vert. projection of $\mathrm{QP}=k \sin \theta$ Subtract $\mathrm{OQ}=\tan \theta$	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & \\ & 3 \end{array}$	Clearly obtained
(ii)	$k=2$ $k=1 / 2$ $k=1$ $k=-1$	G1 G1 G1 G1 4	Loop Cusp
$\begin{array}{r} \hline \text { (iii)(A) } \\ \text { (B) } \\ \text { (C) } \end{array}$	for all k, y axis is an asymptote $\begin{aligned} & k=1 \\ & k>1 \end{aligned}$	B1 B1 B1 	Both
(iv)	$\begin{aligned} & \text { Crosses itself at }(1,0) \\ & k=2 \Rightarrow \cos \theta=1 / 2 \Rightarrow \theta=60^{\circ} \\ & \Rightarrow \text { curve crosses itself at } 120^{\circ} \end{aligned}$	$\begin{array}{\|ll} \hline \text { M1 } & \\ \text { A1 } & \\ & \mathbf{2} \\ \hline \end{array}$	Obtaining a value of θ Accept 240°
(v)	$\begin{array}{ll} & y=8 \sin \theta-\tan \theta \\ \Rightarrow & \frac{d y}{d \theta}=8 \cos \theta-\sec ^{2} \theta \\ \Rightarrow & 8 \cos \theta-\frac{1}{\cos ^{2} \theta}=0 \text { at highest point } \\ \Rightarrow & \cos ^{3} \theta=\frac{1}{8} \Rightarrow \cos \theta= \pm \frac{1}{2} \Rightarrow \theta=60^{\circ} \text { at top } \\ \Rightarrow & x=4 \\ & y=3 \sqrt{3} \end{array}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \\ & 3 \end{array}$	Complete method giving θ Both
(vi)	$\begin{aligned} \text { RHS } & =\frac{(k \cos \theta-1)^{2}}{k^{2} \cos ^{2} \theta}\left(k^{2}-k^{2} \cos ^{2} \theta\right) \\ & =\frac{(k \cos \theta-1)^{2}}{k^{2} \cos ^{2} \theta} \times k^{2} \sin ^{2} \theta \\ & =(k \cos \theta-1)^{2} \tan ^{2} \theta \\ & =((k \cos \theta-1) \tan \theta)^{2} \\ & =(k \sin \theta-\tan \theta)^{2}=\text { LHS } \end{aligned}$	$\begin{array}{ll}\text { M1 } & \\ \text { M1 } & \\ \text { E1 } & \\ & 3\end{array}$	Expressing one side in terms of θ Using trig identities

4758 Differential Equations

1(i)	$\begin{aligned} & \alpha^{2}+6 \alpha+9=0 \\ & \alpha=-3 \text { (repeated) } \\ & y=\mathrm{e}^{-3 t}(A+B t) \end{aligned}$ PI $y=a \sin t+b \cos t$ $\begin{aligned} & \dot{y}=a \cos t-b \sin t \\ & \ddot{y}=-a \sin t-b \cos t \\ & -a \sin t-b \cos t+6(a \cos t-b \sin t) \\ & \quad \quad+9(a \sin t+b \cos t)=0.5 \sin t \end{aligned}$ $\begin{aligned} & 8 a-6 b=0.5 \\ & 8 b+6 a=0 \end{aligned}$ Solving gives $a=0.04, b=-0.03$ GS $y=\mathrm{e}^{-3 t}(A+B t)+0.04 \sin t-0.03 \cos t$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \\ \text { F1 } \\ \text { B1 } \\ \\ \text { M1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{array}$	Auxiliary equation CF for their roots Differentiate twice and substitute Compare coefficients Solve $\mathrm{PI}+\mathrm{CF}$ with two arbitrary constants	
(ii)	$\begin{aligned} & t=0, y=0 \Rightarrow A=0.03 \\ & \dot{y}=\mathrm{e}^{-3 t}(B-3 A-3 B t)+0.04 \cos t+0.03 \sin t \\ & t=0, \dot{y}=0 \Rightarrow 0=B-3 A+0.04 \\ & y=0.01\left(\mathrm{e}^{-3 t}(3+5 t)+4 \sin t-3 \cos t\right) \end{aligned}$	M1 M1 F1 M1 A1	Use condition Differentiate Follows their GS Use condition Cao	
(iii)	For large t, the particle oscillates With amplitude constant (≈ 0.05)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Oscillates Amplitude approximately constant	5
(iv)	$\begin{aligned} & t=20 \pi \Rightarrow \mathrm{e}^{-60 \pi} \text { very small } \\ & y \approx-0.03 \\ & \dot{y} \approx 0.04 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$		2
(v)	$$	M1 A1 B1 $\sqrt{ }$ B1 B1	CF of correct type or same type as in (i) Must use new arbitrary constants $y \approx-0.03 \text { at } t=20 \pi$ Gradient at 20π consistent with (iv) Shape consistent	
				5

2(a)(i)	$\begin{aligned} & I=\exp \int-\tan x \mathrm{~d} x \\ & =\exp (-\ln \sec x) \\ & =(\sec x)^{-1}=\cos x \\ & \cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}-y \sin x=\sin x \\ & \frac{\mathrm{~d}}{\mathrm{~d} x}(y \cos x)=\sin x \\ & y \cos x=-\cos x+A \\ & (y=A \sec x-1) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Attempt IF Correct IF Simplified Multiply by IF Recognise derivative Integrate RHS (including constant) LHS	8
	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=(1+y) \tan x \\ & \ln (1+y)=\ln \sec x+A \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Rearrange equation Separate variables RHS LHS	8
(ii)	$\begin{aligned} & x=0, y=0 \Rightarrow 0=A-1 \\ & y=\sec x-1 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Use condition Shape and through origin Behaviour at $\pm 1 / 2 \pi$	
(b)(i)		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Attempt one curve Reasonable attempt at one curve Attempt second curve Reasonable attempt at both curves	4
(ii)	$\begin{aligned} & y^{\prime}=\left(1+y^{2}\right) \tan x \\ & x=0, y=1 \Rightarrow y^{\prime}=0 \\ & y(0.1)=1+0.1 \times 0=1 \\ & x=0.1, y=1 \Rightarrow y^{\prime}=0.201 \\ & y(0.2)=1+0.1 \times 0.201 \\ & =1.0201 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { E1 } \end{aligned}$	Rearrange Use of algorithm Use of algorithm for second step	
(iii)	$\tan \frac{\pi}{2}$ undefined so cannot go past $\frac{\pi}{2}$ So approximation cannot continue to $1.6>\frac{\pi}{2}$	M1 A1		
				2
(iv)	Reduce step length	B1		1

3(i)	$\begin{aligned} & \dot{x}=A \mathrm{e}^{-k t} \\ & t=0, \dot{x}=v_{1} \Rightarrow A=v_{1} \\ & \dot{x}=v_{1} \mathrm{e}^{-k t} \\ & x=\int v_{1} \mathrm{e}^{-k t} \mathrm{~d} t \\ & =-\frac{v_{1}}{k} \mathrm{e}^{-k t}+B \\ & t=0, x=0 \Rightarrow B=\frac{v_{1}}{k} \\ & x=\frac{v_{1}}{k}\left(1-\mathrm{e}^{-k t}\right) \end{aligned}$	M1 A1 M1 A1 M1 A1 M1 E1	Any valid method (or no method shown) Use condition Integrate Use condition	8
(ii)	$\begin{aligned} & \int \frac{\mathrm{d} \dot{y}}{\dot{y}+g / k}=\int-k \mathrm{~d} t \\ & \operatorname{In}\left(\dot{y}+\frac{g}{k}\right)=-k t+C \\ & \dot{y}+\frac{g}{k}=D \mathrm{e}^{-k t} \\ & t=0, \dot{y}=v_{2} \Rightarrow D=v_{2}+\frac{g}{k} \\ & \dot{y}=\left(v_{2}+\frac{g}{k}\right) e^{-k t}-\frac{g}{k} \\ & y=\int\left(\left(v_{2}+\frac{g}{k}\right) \mathrm{e}^{-k t}-\frac{g}{k}\right) \mathrm{d} t \\ & =-\frac{1}{k}\left(v_{2}+\frac{g}{k}\right) \mathrm{e}^{-k t}-\frac{g}{k} t+E \\ & t=0, y=0 \Rightarrow 0=-\frac{1}{k}\left(v_{2}+\frac{g}{k}\right)+E \\ & y=\frac{1}{k^{2}}\left(k v_{2}+g\right)\left(1-\mathrm{e}^{-k t}\right)-\frac{g}{k} t \end{aligned}$	M1 A1 A1 M1 M1 A1 M1 A1 M1 E1	Separate and integrate LHS RHS Rearrange, dealing properly with constant Use condition Integrate Use condition	1
(iii)	$\begin{aligned} & 1-\mathrm{e}^{-k t}=\frac{k x}{v_{1}} \\ & t=-\frac{1}{k} \ln \left(1-\frac{k x}{v_{1}}\right) \\ & y=\left(\frac{k v_{2}+g}{k v_{1}}\right) x+\frac{g}{k^{2}} \ln \left(1-\frac{k x}{v_{1}}\right) \end{aligned}$	M1 A1 M1 E1	Substitute Convincingly shown	4
(iv)	$x=8 \Rightarrow y=4.686$ Hence will not clear wall	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \end{array}$		2

4(i)	$\begin{aligned} & 4 y=-3 x+23-\dot{x} \\ & 4 \dot{y}=-3 \dot{x}-\ddot{x} \\ & \frac{1}{4}(-3 \dot{x}-\ddot{x})=2 x+\frac{1}{4}(-3 x+23-\dot{x})-7 \\ & -3 \dot{x}-\ddot{x}=8 x-3 x+23-\dot{x}-28 \\ & \Rightarrow \ddot{x}+2 \dot{x}+5 x=5 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \hline \end{aligned}$	y or $4 y$ in terms of x, \dot{x} Differentiate Substitute for y Substitute for \dot{y}	5
(ii)	$\begin{aligned} & \begin{array}{l} \alpha^{2}+2 \alpha+5=0 \\ \Rightarrow \alpha=-1 \pm 2 i \end{array} \\ & \text { CF } \mathrm{e}^{-t}(A \cos 2 t+B \sin 2 t) \\ & \text { PI } x=\frac{5}{5}=1 \\ & \text { GS } x=1+\mathrm{e}^{-t}(A \cos 2 t+B \sin 2 t) \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { F1 } \\ \text { B1 } \\ \text { B1 } \\ \hline \end{array}$	Auxiliary equation CF for complex roots CF for their roots Constant PI Correct PI PI + CF with two arbitrary constants	
(iii)	$\begin{aligned} & y=\frac{1}{4}(-3 x+23-\dot{x}) \\ & =\frac{1}{4}\left[-3-3 \mathrm{e}^{-t}(A \cos 2 t+B \sin 2 t)+23\right. \\ & \quad \quad+\mathrm{e}^{-t}(A \cos 2 t+B \sin 2 t) \\ & \left.\quad \quad-\mathrm{e}^{-t}(-2 A \sin 2 t+2 B \cos 2 t)\right] \\ & y=5-\frac{1}{2} \mathrm{e}^{-t}((A+B) \cos 2 t+(B-A) \sin 2 t) \end{aligned}$	$\begin{array}{\|l} \text { M1 } \\ \text { M1 } \\ \text { M1 } \\ \text { F1 } \\ \\ \hline \end{array}$	Differentiate and substitute Expression for \dot{x} follows their GS	
(iv)	$\begin{aligned} & t=0, x=8 \Rightarrow 1+A=8 \Rightarrow A=7 \\ & t=0, y=0 \Rightarrow 5-\frac{1}{2}(A+B)=0 \Rightarrow B=3 \\ & x=1+\mathrm{e}^{-t}(7 \cos 2 t+3 \sin 2 t) \\ & y=5-\mathrm{e}^{-t}(5 \cos 2 t-2 \sin 2 t) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Use condition Use condition	
(v)	For large t, e^{-t} tends to 0 $\begin{aligned} & y \rightarrow 5 \\ & x \rightarrow 1 \\ & \Rightarrow y>x \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { B1 } \\ \text { B1 } \\ \hline \mathbf{E} 1 \end{array}$	Complete argument	

4761 Mechanics 1

1 (i)	$\begin{aligned} & 0<t<2, v=2 \\ & 2<t<3.5 v=-5 \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Condone '5 downwards' and ' - 5 downwards'	2
(ii)		B1 B1	Condone intent - e.g. straight lines free-hand and scales not labelled; accept non-vertical sections at $t=2 \& 3.5$. Only horizontal lines used and $1^{\text {st }}$ two parts present. BOD t-axis section. One of $1^{\text {st }} 2$ sections correct. FT (i) and allow if answer correct with (i) wrong All correct. Accept correct answer with (i) wrong. FT (i) only if $2^{\text {nd }}$ section -ve in (i)	
(iii)	(A) upwards; (B) and (C) downwards	E1	All correct. Accept $+/-$ ve but not towards/away from O Accept forwards/backwards. Condone additional wrong statements about position.	
2 (i)	$\begin{aligned} & \binom{12}{9}=\binom{2}{-3}+4 \mathbf{a} \\ & \text { so } \mathbf{a}=\binom{2.5}{3} \end{aligned}$	M1 A1	Use of $\mathbf{v}=\mathbf{u}+\mathbf{a} t$ If vector a seen, isw.	
(ii)	either $\begin{aligned} & \mathbf{r}=\binom{-1}{2}+\binom{2}{-3} \times 4+\frac{1}{2} \mathbf{a} \times 4^{2} \\ & \mathbf{r}=\binom{27}{14} \text { so }\binom{27}{14} \mathrm{~m} \end{aligned}$ or	M1 A1 A1 M1 A1 A1	For use of $\mathbf{s}=\mathbf{u} t+\frac{1}{2} \mathbf{a} t^{2}$ with their a. Initial position may be omitted. FT their a. Initial position may be omitted. cao. Do not condone magnitude as final answer. Use of $\mathbf{s}=0.5 t(\mathbf{u}+\mathbf{v})$ Initial position may be omitted. Correct substitution. Initial position may be omitted. cao Do not condone mag as final answer. $\mathrm{SC} 2 \text { for }\binom{28}{12}$	

(iii)	Using N2L $\mathbf{F}=5 \mathbf{a}=\binom{12.5}{15} \text { so }\binom{12.5}{15} \mathrm{~N}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~F} 1 \end{aligned}$	Use of $\mathbf{F}=m \mathbf{a}$ or $\mathbf{F}=m g \mathbf{a}$. FT their a only. Do not accept magnitude as final ans.	2
				7
3 (i)	$\begin{aligned} & \|\mathbf{F}\|=\sqrt{(-1)^{2}+5^{2}} \\ & =\sqrt{26}=5.0990 \ldots=5.10 \text { (3 s. f.) } \end{aligned}$ Angle with \mathbf{j} is $\arctan (0.2)$ so $11.309 \ldots$ so 11.3° (3 s. f.)	M1 A1 M1 A1	Accept $\sqrt{-1^{2}+5^{2}}$ even if taken to be $\sqrt{24}$ $\operatorname{accept} \arctan (p)$ where $p= \pm 0.2$ or ± 5 o.e. cao	
(ii)	$\begin{aligned} & \binom{-2}{3 b}=4\binom{-1}{5}+\binom{2 a}{a} \\ & a=1, b=7 \\ & \text { so } \mathbf{G}=\binom{2}{1} \text { and } \mathbf{H}=\binom{-2}{21} \\ & \text { or } \mathbf{G}=2 \mathbf{i}+\mathbf{j} \text { and } \mathbf{H}=-2 \mathbf{i}+21 \mathbf{j} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	$\mathbf{H}=4 \mathbf{F}+\mathbf{G} \text { soi }$ Formulating at least 1 scalar equation from their vector equation soi a correct or \mathbf{G} follows from their wrong a H cao	4
				8
4(i)	$20 \cos 15=19.3185 \ldots$ so 19.3 N (3 s. f.) in direction BC	B1	Accept no direction. Must be evaluated	
(ii)	Let the tension be T $T \sin 50=19.3185 \ldots$. so $T=25.2185 \ldots$ so 25.2 N (3 s. f.)	$\begin{aligned} & \text { M1 } \\ & \text { F1 } \end{aligned}$	Accept $\sin \leftrightarrow \cos$ but not $(\mathrm{i}) \times \sin 50$ FT their 19.3... only. cwo	2
(iii)	$\begin{aligned} & R+20 \sin 15-2.5 g-25.2185 \ldots \times \\ & \cos 50=0 \end{aligned}$	M1 B1 A1 A1	Allow 1 force missing or 1 tension not resolved. FT T. No extra forces. Accept mass used. Accept $\sin \leftrightarrow \cos$. Weight correct All correct except sign errors. FT their T cao. Accept 35 or 36 for 2. s.f.	
(iv)	The horizontal resolved part of the 20 N force is not changed.	E1	Accept no reference to vertical component but do not accept 'no change' to both components. No need to be explicit that value of tension in AB depends only on horizontal component of force at C	
				1
				8

5(i)	$a=6 t-12$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Differentiating cao	
(ii)	We need $\int_{1}^{3}\left(3 t^{2}-12 t+14\right) \mathrm{d} t$ $=\left[t^{3}-6 t^{2}+14 t\right]_{1}^{3}$ either $\begin{aligned} & =(27-54+42)-(1-6+14) \\ & =15-9=6 \text { so } 6 \mathrm{~m} \end{aligned}$ or $\begin{aligned} & s=t^{3}-6 t^{2}+14 t+C \\ & s=0 \text { when } t=1 \text { gives } \\ & 0=1-6+14+C \text { so } C=-9 \end{aligned}$ Put $t=3$ to give $s=27-54+42-9=6 \text { so } 6 \mathrm{~m} \text {. }$	M1 A1 M1 A1 M1 A1	Integrating. Neglect limits. At least two terms correct. Neglect limits. Dep on $1^{\text {st }} \mathrm{M} 1$. Use of limits with attempt at subtraction seen. cao Dep on $1^{\text {st }} \mathrm{M} 1$. An attempt to find C using $s(1)=0$ and then evaluating $s(3)$. cao	
(iii)	$v>0$ so the particle always travels in the same (+ve) direction As the particle never changes direction, the final distance from the starting point is the displacement.	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$	Only award if explicit Complete argument	
				2
				8
6 (i)	Component of weight down the plane is $1.5 \times 9.8 \times \frac{2}{7}=4.2 \mathrm{~N}$	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \end{aligned}$	Use of $m g k$ where k involves an attempt at resolution Accept $1.5 \times 9.8 \times \frac{2}{7}=4.2$ or $14.7 \times \frac{2}{7}=4.2$ seen	
(ii)	Down the plane. Take F down the plane. $4.2-6.4+F=0$ so $F=2.2$. Friction is 2.2 N down the plane	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow sign errors. All forces present. No extra forces. Must have direction. [Award 1 for 2.2 N seen and 2 for 2.2 N down plane seen]	
(iii)	F up the plane N2L down the plane $4.2-F=1.5 \times 1.2$ $\text { so } F=4.2-1.8=2.4$ Friction is 2.4 N up the plane	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	N2L. $F=m a$. No extra forces. Allow weight term missing or wrong Allow only sign errors ± 2.4 cao. Accept no reference to direction if $F=2.4$.	
(iv)	$\begin{aligned} & 2^{2}=0.8^{2}+2 \times 1.2 \times s \\ & s=1.4 \text { so } 1.4 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Use of $v^{2}=u^{2}+2 a s$ or sequence All correct in 1 or 2-step method	

(v)	Diagrams either Up the plane $10-3.5 \times 9.8 \times \frac{2}{7}-(2.3+0.7)=3.5 a$ $a=-0.8 \text { so } 0.8 \mathrm{~m} \mathrm{~s}^{-2} .$ down the plane For barge B up the plane $T-2 \times 9.8 \times \frac{2}{7}-0.7=2 \times(-0.8)$ $T=4.7$ so 4.7 N . Tension or (separate equations of motion) Barge A Barge B $a=-0.8 \text { so } 0.8 \mathrm{~m} \mathrm{~s}^{-2} .$ down the plane $T=4.7$ so 4.7 N . Tension	B1 B1 M1 B1 A1 M1 A1 M1 M1 M1 A1 A1	Frictions and coupling force correctly labelied with arrows. All forces present and properly labelled with arrows. N2L. $F=m a$. No extra forces. Condone sign errors. Allow total/part weight or total/part friction omitted (but not both). Allow mass instead of weight and mass/weight not or wrongly resolved. Correct overall mass and friction Clear description or diagram N2L on one barge with their $\pm a(\neq 1.2$ or 0$)$. All forces present and weight component attempted. No extra forces. Condone sign errors. cao In eom for A or B allow weight or friction missing and also allow mass used instead of weight and wt not or wrongly resolved. In other equn weight component attempted and friction term present. N2L. Do not allow $F=m g a$. No extra forces. Condone sign errors. N2L. Do not allow $F=m g a$. No extra forces. Condone sign errors. Solving a pair of equns in a and T Clear description or diagram cao cwo	
				7
				18
7 (i)	$y(0)=1$	B1		
(ii)	Either $\frac{1}{2}(20+5)-5=7.5$ or $\begin{aligned} & y(7.5)=\frac{1}{100}\left(100+15 \times 7.5-7.5^{2}\right) \\ & =\frac{25}{16}(1.5625) \text { so } 1.5625 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { E1 } \end{aligned}$	Use of symmetry e.g. use of $\frac{1}{2}(20+5)$ 12.5 o.e. seen 7.5 cao Attempt at y^{\prime} and to solve $y^{\prime}=0$ $k(15-2 x)$ where $k=1$ or $\frac{1}{100}$ 7.5 cao, seen as final answer FT their 7.5 AG [SC2 only showing 1.5625 leads to $x=7.5$]	

(iii)	$4.9 t^{2}=\frac{25}{16}(1.5625)$ $t^{2}=0.31887 \ldots \text { so } t= \pm 0.56469 \ldots$ Hence 0.565 s (3 s. f.)	M1 A1 E1	Use of $s=u t+0.5 a t^{2}$ with $u=0$. Condone use of $\pm 10, \pm 9.8, \pm 9.81$. If sequence of suvat used, complete method required. In any method only error accepted is sign error AG. Condone no reference to -ve value. www. 0.565 must be justified as answer to 3 s . f.	3
(iv)	$\begin{aligned} & \dot{x}=\frac{12.5}{0.56469 \ldots}=22.1359 \ldots \\ & \text { so } \left.22.1 \mathrm{~m} \mathrm{~s}^{-1}(3 \mathrm{~s} . \mathrm{f} .)\right) \\ & \text { Either } \\ & \text { Time is } \frac{20}{12.5} \times 0.56469 \ldots \mathrm{~s} \\ & \text { so } 0.904 \mathrm{~s} \mathrm{(} 3 \mathrm{~s} . \text { f.) } \\ & \text { or } \\ & \text { Time is } \frac{20}{22.1359 \ldots} \text { s } \\ & =0.903507 \ldots \text { so } 0.904 \mathrm{~s}(3 \mathrm{~s} . \text { f. }) \\ & \text { or } \\ & \text { (iii) }+\frac{7.5}{\text { their } \dot{x}} \\ & \text { so } 0.904 \mathrm{~s}(3 \text { s. f.) } \end{aligned}$	M1 B1 E1 M1 A1 M1 A1 M1 A1	or $25 /(2 \times 0.56469$.. $)$ Use of 12.5 or equivalent 22.1 must be justified as answer to 3 s . f. Don't penalise if penalty already given in (iii). cao Accept 0.91 (2 s. f.) cao Accept 0.91 (2 s. f.) cao Accept 0.91 (2 s. f.)	5
(v)	$\begin{aligned} & v=\sqrt{\dot{x}^{2}+\dot{y}^{2}} \\ & \dot{y}^{2}=0^{2}+2 \times 9.8 \times \frac{25}{16} \quad \text { or } \\ & \dot{y}=0+9.8 \times 0.5646 \ldots \\ & =\frac{245}{8}(30.625) \quad \text { or } \quad \dot{y}= \pm 5.539 \ldots \end{aligned}$ so $v=\sqrt{490+30.625}=22.8172 \ldots \mathrm{~m} \mathrm{~s}^{-1}$ so $22.8 \mathrm{~m} \mathrm{~s}^{-1}(3 \mathrm{~s} . \mathrm{f}$.)	M1 M1 A1 A1	Must have attempts at both components Or equiv. $u=0$. Condone use of $\pm 10, \pm 9.8, \pm 9.81$. Accept wrong s (or t in alternative method) Or equivalent. May be implied. Could come from (iii) if $v^{2}=u^{2}+2$ as used there. Award marks again. cao. www	4
				18

4762 Mechanics 2

$1 \text { (a) }$ (i)	Let vel of Q be $v \rightarrow$ $6 \times 1=4 v+2 \times 4$ $v=-0.5 \text { so } 0.5 \mathrm{~m} \mathrm{~s}^{-1}$ in opposite direction to R	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Use of PCLM Any form Direction must be made clear. Accept -0.5 only if + ve direction clearly shown	4
(ii)	Let velocities after be R: $v_{\mathrm{R}} \rightarrow$; $\mathrm{S}: v_{\mathrm{S}}$ \rightarrow PCLM $+\mathrm{ve} \rightarrow 4 \times 2-1 \times 3=2 v_{\mathrm{R}}+3 v_{\mathrm{S}}$ $2 v_{\mathrm{R}}+3 v_{\mathrm{S}}=5$ NEL $+\mathrm{ve} \rightarrow$ $\frac{v_{\mathrm{s}}-v_{\mathrm{R}}}{-1-4}=-0.1$ so $v_{S}-v_{R}=0.5$ Solving gives $\begin{aligned} & v_{\mathrm{R}}=0.7 \rightarrow \\ & v_{\mathrm{S}}=1.2 \rightarrow \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	PCLM Any form NEL Any form Direction not required Direction not required Award cao for 1 vel and FT second	6
(iii)	R and S separate at $0.5 \mathrm{~m} \mathrm{~s}^{-1}$ Time to drop T given by $0.5 \times 9.8 T^{2}=0.4 \text { so } T=\frac{2}{7}(0.28571 \ldots)$ so distance is $\frac{2}{7} \times 0.5=\frac{1}{7} \mathrm{~m}$ $(0.142857 \ldots \mathrm{~m})$	M1 B1 A1	FT their result above. Either from NEL or from difference in final velocities cao	3
(b)	$u \rightarrow u$ $v \rightarrow(-) e v$ KE loss is $\begin{aligned} & \frac{1}{2} m\left(u^{2}+v^{2}\right)-\frac{1}{2} m\left(u^{2}+e^{2} v^{2}\right) \\ & =\frac{1}{2} m u^{2}+\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}-\frac{1}{2} m e^{2} v^{2} \\ & =\frac{1}{2} m v^{2}\left(1-e^{2}\right) \end{aligned}$	B1 B1 M1 E1	Accept $v \rightarrow e v$ Attempt at difference of KEs Clear expansion and simplification of correct expression	
				4
				17

2(i)	GPE is $1200 \times 9.8 \times 60=705600$ Power is $(705600+1800000) \div 120$ $=20880 \mathrm{~W}=20900 \mathrm{~W} \text { (3 s. f.) }$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	Need not be evaluated power is WD \div time 120 s cao	4
(ii)	Using $P=F v$. Let resistance be $R \mathrm{~N}$ $13500=18 F$ so $F=750$ As v const, $a=0$ so $F-R=0$ Hence resistance is 750 N We require $750 \times 200=150000 \mathrm{~J}$ $(=150 \mathrm{~kJ})$	M1 A1 E1 M1 F1	Use of $P=F v$. Needs some justification Use of WD $=F d$ or $P t$ FT their F	5
(iii)	$\begin{aligned} & \frac{1}{2} \times 1200 \times\left(9^{2}-18^{2}\right) \\ & =1200 \times 9.8 \times x \sin 5-1500 x \\ & \text { Hence } 145800=475.04846 \ldots x \\ & \text { so } x=306.91 \ldots \text { so } 307 \mathrm{~m}(3 \mathrm{~s}, \mathrm{f},) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Use of W-E equation with ' x ' 2 KE terms present GPE term with resolution GPE term correct All correct cao	6
(iv)	$P=F v$ and N2L gives $F-R=1200 a$ Substituting gives $P=(R+1200 a) v$ If $a \neq 0, v$ is not constant. But P and R are constant so a cannot be constant.	B1 B1 E1 E1	Shown	
				4
				19
$\begin{aligned} & 3 \text { (i) } \\ & \text { (A) } \end{aligned}$	Let force be P a.c. moments about C $P \times 0.125-340 \times 0.5=0$ $P=1360 \text { so } 1360 \mathrm{~N}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Moments about C. All forces present. No extra forces. Distances correct cao	3
(i) (B)	Let force be P c.w. moments about E $P \times 2.125-340 \times(2-0.5)=0$ $P=240 \text { so } 240 \mathrm{~N}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Moments about E . All forces present. No extra forces. Distances correct cao	3

(ii)	$\begin{aligned} & Q \sin \theta \times 2.125+Q \cos \theta \times 0.9 \\ & =\frac{25.5 \varrho}{13}+\frac{4.5 Q}{13} \\ & =\frac{30 \varrho}{13} \text { so } \frac{30 \varrho}{13} \mathrm{Nm} \end{aligned}$	M1 B1 E1	Moments expression. Accept $s \leftrightarrow c$. Correct trig ratios or lengths Shown	
(iii)	We need $\frac{309}{13}=340 \times 1.5$ $\text { so } Q=221$ Let friction be F and normal reaction R Resolve \rightarrow $221 \cos \theta-F=0$ so $F=85$ Resolve \uparrow $221 \sin \theta+R=340$ so $R=136$ $F<\mu R$ as not on point of sliding so $85<136 \mu$ so $\mu>\frac{5}{8}$	M1 E1 M1 A1 M1 A1 M1 A1 E1	Moments equn with all relevant forces Shown Accept \leq or $=$ Accept \leq. FT their F and R	
				9
				18
4 (i)	$\begin{aligned} & 4000\binom{\bar{x}}{\bar{y}}=4800\binom{30}{40}-800\binom{50}{20} \\ & \text { so } \bar{x}=26 \\ & \bar{y}=44 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { E1 } \\ & \text { A1 } \end{aligned}$	Any complete method for c.m. Either one RHS term correct or one component of both RHS terms correct [SC 2 for correct \bar{y} seen if M 0]	
(ii)	$\begin{aligned} & 250\binom{\bar{x}}{\bar{y}} \\ & =110\binom{0}{55}+40\binom{20}{0}+40\binom{40}{20}+20\binom{50}{40}+40\binom{60}{60} \end{aligned}$ $\begin{aligned} & \bar{x}=23.2 \\ & \bar{y}=40.2 \end{aligned}$	M1 B1 B1 E1 A1	Any complete method for c.m. Any 2 edges correct mass and c.m. or any 4 edges correct with mass and x or $y \mathrm{c} . \mathrm{m}$. coordinate correct. At most one consistent error	

(iii)	Angle is $\arctan \left(\frac{23.2}{110-40.2}\right)$ $=18.3856 \ldots$ so $18.4^{\circ}(3$ s. f.)	B1 B1 M1 A1	Indicating c.m. vertically below Q Clearly identifying correct angle (may be implied) and lengths Award for $\arctan \left(\frac{b}{a}\right)$ where $b=23.2$ and $a=69.8$ or 40.2 or where $b=69.8$ or 40.2 and $a=23.2$. Allow use of their value for y only. cao
(iv)	$\begin{aligned} & 10\binom{\bar{x}}{\bar{y}}=2 \times 1.5 \times\binom{ 26}{44}+7\binom{23.2}{40.2} \\ & \bar{x}=24.04 \text { so } 24.0 \text { (3 s.f.) } \\ & \bar{y}=41.34 \text { so } 41.3 \text { (3 s.f.) } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { F1 } \end{aligned}$	Combining the parts using masses Using both ends All correct cao FT their y values only.

4763 Mechanics 3

$\begin{aligned} & \text { 1(a) } \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & {[\text { Density }]=\mathrm{ML}^{-3}} \\ & {[\text { Kinetic Energy }]=\mathrm{ML}^{2} \mathrm{~T}^{-2}} \\ & {[\text { Power }]=\mathrm{ML}^{2} \mathrm{~T}^{-3}} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	(Deduct B1 for $\mathrm{kg} \mathrm{m}^{-3} \mathrm{etc}$)	
(ii)	$\mathrm{ML}^{2} \mathrm{~T}^{-3}=[\eta] \mathrm{L}\left(\mathrm{LT}^{-1}\right)^{2}$ $[\eta]=\mathrm{ML}^{-1} \mathrm{~T}^{-1}$	B1 M1 A1	For $[v]=\mathrm{LT}^{-1}$ Can be earned in (iii) Obtaining the dimensions of η	
(iii)	$\begin{aligned} \mathrm{ML}^{2} \mathrm{~T}^{-3} & =\left(\mathrm{ML}^{-3}\right)^{\alpha} \mathrm{L}^{\beta}\left(\mathrm{LT}^{-1}\right)^{\gamma} \\ \alpha & =1 \\ -3 & =-\gamma \\ \gamma & =3 \\ 2 & =-3 \alpha+\beta+\gamma \\ \beta & =2 \end{aligned}$	B1 cao M1 A1 M1 A1 A1	Considering powers of T (No ft if $\gamma=0$) Considering powers of L Correct equation (ft requires 4 terms) (No ft if $\beta=0$)	
(b)	EE at start is $\frac{1}{2} k \times 0.8^{2}$ EE at end is $\frac{1}{2} k \times 0.3^{2}$ $\frac{1}{2} k \times 0.8^{2}=\frac{1}{2} k \times 0.3^{2}+5.5 \times 9.8 \times 3.5$ Stiffness is $686 \mathrm{Nm}^{-1}$	M1 A1 A1 M1 F1 A1	Calculating elastic energy k may be $\frac{\lambda}{l}$ or $\frac{\lambda}{1.2}$ Equation involving EE and PE (must have three terms) (A 0 for $\lambda=823.2$)	
				[18]

2 (a)	$\begin{aligned} & \begin{aligned} \int \pi x y^{2} \mathrm{~d} x & =\int_{0}^{a} \pi x\left(a^{2}-x^{2}\right) \mathrm{d} x \\ & =\pi\left[\frac{1}{2} a^{2} x^{2}-\frac{1}{4} x^{4}\right]_{0}^{a} \\ & =\frac{1}{4} \pi a^{4} \\ \bar{x} & =\frac{\frac{1}{4} \pi a^{4}}{\frac{2}{3} \pi a^{3}} \end{aligned} \\ & =\frac{3}{8} a \end{aligned}$	M1 A1 A1 M1 E1	Limits not required For $\frac{1}{2} a^{2} x^{2}-\frac{1}{4} x^{4}$	5
(b) (i)	$\begin{aligned} & \text { Area is } \int_{1}^{4}(2-\sqrt{x}) \mathrm{d} x \\ & =\left[2 x-\frac{2}{3} x^{3 / 2}\right]_{1}^{4}\left(=\frac{4}{3}\right) \\ & \begin{aligned} & \int x y \mathrm{~d} x=\int_{1}^{4} x(2-\sqrt{x}) \mathrm{d} x \\ &=\left[x^{2}-\frac{2}{5} x^{\frac{5}{2}}\right]_{1}^{4}\left(=\frac{13}{5}\right) \\ & \begin{aligned} \bar{x}=\frac{13 / 5}{4 / 3}= & \frac{39}{20}=1.95 \end{aligned} \\ & \begin{aligned} \int \frac{1}{2} y^{2} \mathrm{~d} x & =\int_{1}^{4} \frac{1}{2}(2-\sqrt{x})^{2} \mathrm{~d} x \end{aligned} \\ &=\left[2 x-\frac{4}{3} x^{3 / 2}+\frac{1}{4} x^{2}\right]_{1}^{4}\left(=\frac{5}{12}\right) \\ & \bar{y}=\frac{5 / 12}{4 / 3}=\frac{5}{16}=0.3125 \end{aligned} \end{aligned}$	M1 A1 M1 A1 A1 M1 A2 A1	Limits not required For $2 x-\frac{2}{3} x^{\frac{3}{2}}$ Limits not required For $x^{2}-\frac{2}{5} x^{\frac{5}{2}}$ $\int(2-\sqrt{x})^{2} \mathrm{~d} x \quad \text { or } \int\left((2-y)^{2}-1\right) y \mathrm{~d} y$ For $2 x-\frac{4}{3} x^{\frac{3}{2}}+\frac{1}{4} x^{2}$ or $\frac{3}{2} y^{2}-\frac{4}{3} y^{3}+\frac{1}{4} y^{4}$ Give A1 for two terms correct, or all correct with $1 / 2$ omitted	9
(ii)	Taking moments about A $T_{C} \times 3-W \times 0.95=0$ $\begin{aligned} & T_{A}+T_{C}=W \\ & T_{A}=\frac{41}{60} W, \quad T_{C}=\frac{19}{60} W \end{aligned}$	M1 A1 M1 A1	Moments equation (no force omitted) Any correct moments equation (May involve both T_{A} and T_{C}) Accept $W g$ or $W=\frac{4}{3}, \frac{4}{3} g$ here Resolving vertically (or a second moments equation) Accept $0.68 \mathrm{~W}, 0.32 \mathrm{~W}$	4
				[18]

3 (i)	By conservation of energy, $\begin{aligned} \frac{1}{2} \times 0.6 \times 6^{2}-\frac{1}{2} \times 0.6 v^{2} & =0.6 \times 9.8(1.25-1.25 \cos \theta) \\ 36-v^{2} & =24.5-24.5 \cos \theta \\ v^{2} & =11.5+24.5 \cos \theta \end{aligned}$	M1 A1 E1	Equation involving KE and PE	3
(ii)	$\begin{aligned} T-0.6 \times 9.8 \cos \theta & =0.6 \times \frac{v^{2}}{1.25} \\ T-5.88 \cos \theta & =0.48(11.5+24.5 \cos \theta) \\ T & =5.52+17.64 \cos \theta \end{aligned}$	M1 A1 M1 A1	For acceleration $\frac{v^{2}}{r}$ Substituting for v^{2}	4
(iii)	String becomes slack when $T=0$ $\begin{aligned} & \cos \theta=-\frac{5.52}{17.64} \quad\left(\theta=108.2^{\circ} \text { or } 1.889 \mathrm{rad}\right) \\ & v^{2}=11.5-24.5 \times \frac{5.52}{17.64} \end{aligned}$ Speed is $1.96 \mathrm{~m} \mathrm{~s}^{-1} \quad(3 \mathrm{sf})$	M1 A1 M1 A1 cao	May be implied or $0.6 \times 9.8 \times \frac{5.52}{17.64}=0.6 \times \frac{v^{2}}{1.25}$ or $-0.6 \times 9.8 \times \frac{v^{2}-11.5}{24.5}=0.6 \times \frac{v^{2}}{1.25}$	4
(iv)	$\begin{aligned} T_{1} \cos \theta & =m g \\ T_{1} \times \frac{1.2}{1.25} & =0.6 \times 9.8 \end{aligned} \quad(\text { where } \theta \text { is angle COP })$ Tension in OP is 6.125 N $\begin{gathered} T_{1} \sin \theta+T_{2}=\frac{m v^{2}}{0.35} \\ 6.125 \times \frac{0.35}{1.25}+T_{2}=\frac{0.6 \times 1.4^{2}}{0.35} \end{gathered}$ Tension in CP is 1.645 N	M1 A1 A1 M1 F1B1 A1	Resolving vertically Horizontal equation (three terms) For LHS and RHS	7
				[18]

4(i)	$\begin{aligned} & T_{\mathrm{AP}}=\frac{7.35}{1.5} \times 0.05 \quad(=0.245) \\ & T_{\mathrm{BP}}=\frac{7.35}{2.5} \times 0.5 \quad(=1.47) \end{aligned}$ Resultant force up the plane is $\begin{aligned} T_{\mathrm{BP}}- & T_{\mathrm{AP}}-m g \sin 30^{\circ} \\ & =1.47-0.245-0.25 \times 9.8 \sin 30^{\circ} \\ & =1.47-0.245-1.225 \\ & =0 \end{aligned}$ Hence there is no acceleration	M1 A1 A1 M1 E1	Using Hooke's law or $\frac{7.35}{1.5}$ (AP-1.5) or $\frac{7.35}{2.5}(2.05-\mathrm{AP})$ Correctly shown	5
(ii)	$\begin{aligned} T_{\mathrm{AP}} & =\frac{7.35}{1.5}(0.05+x) \quad(=0.245+4.9 x) \\ T_{\mathrm{BP}} & =\frac{7.35}{2.5}(4.55-1.55-x-2.5) \\ & =2.94(0.5-x) \\ & =1.47-2.94 x \end{aligned}$	B1 M1 E1		3
(iii)	$\begin{aligned} T_{\mathrm{BP}}-T_{\mathrm{AP}}-m g \sin 30^{\circ} & =m \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}} \\ (1.47-2.94 x)-(0.245+4.9 x)-1.225 & =0.25 \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}} \\ \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}} & =-31.36 x \end{aligned}$ Hence the motion is simple harmonic Period is $\frac{2 \pi}{\sqrt{31.36}}=\frac{2 \pi}{5.6}$ Period is $1.12 \mathrm{~s}(3 \mathrm{sf})$	M1 A2 E1 B1 cao	Equation of motion parallel to plane Give A1 for an equation which is correct apart from sign errors Must state conclusion. Working must be fully correct (cao) If a is used for accn down plane, then $a=31.36 x$ can earn M1A2; but E1 requires comment about directions Accept $\frac{5 \pi}{14}$	5
(iv)	$\begin{align*} & x=-0.05 \cos 5.6 t \\ & \quad v=0.28 \sin 5.6 t \\ & -0.2=0.28 \sin 5.6 t \\ & \text { OR } \quad 0.2^{2}=31.36\left(0.05^{2}-x^{2}\right) \\ & \quad x=(\pm) 0.035 \\ & \quad 0.035=-0.05 \cos 5.6 t \tag{M1}\\ & 5.6 t=\pi+0.7956 \end{align*}$ Time is $0.703 \mathrm{~s}(3 \mathrm{sf})$	M1 A1 M1 M1 A1cao	For $A \sin \omega t$ or $A \cos \omega t$ Allow $\pm 0.05 \mathrm{sin} / \cos 5.6 t$ Implied by $v= \pm 0.28 \mathrm{sin} / \cos 5.6 t$ Using $v= \pm 0.2$ to obtain an equation for t Fully correct strategy for finding the required time	5
				[18]

4766 Statistics 1

\begin{tabular}{|c|c|c|c|c|}
\hline 1 \& (i) \& \[
\begin{array}{ll|lllllllll}
\& 5 \& 2 \& \& \& \& \& \& \& \& \\
\& 6 \& 3 \& 4 \& 7 \& 8 \& \& \& \& \& \\
\& 7 \& 1 \& 2 \& 2 \& 3 \& 4 \& 5 \& 5 \& 7 \& 9 \\
\& 8 \& 1 \& \& \& \& \& \& \& \& \\
\text { Key } \& 6 \& 3 \& \text { represents } 63 \mathrm{mph} \& \& \&
\end{array}
\] \& \begin{tabular}{l}
G1 stem \\
G1 leaves CAO \\
G1 sorted \\
G1 key
\end{tabular} \& [4] \\
\hline \& (ii) \& \[
\begin{aligned}
\& \text { Median }=72 \\
\& \text { Midrange }=66.5
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { B1 FT } \\
\& \text { B1 CAO }
\end{aligned}
\] \& [2] \\
\hline \& (iii) \& EITHER: Median since midrange is affected by outlier (52) OR: Median since the lack of symmetry renders the midrange less representative \& \begin{tabular}{l}
E1 for median E1 for explanation \\
TOTAL
\end{tabular} \& [2]
[8] \\
\hline 2 \& (i) \& \begin{tabular}{l}
(A) \(\mathrm{P}(X=10)=\mathrm{P}(5\) then 5\()=0.4 \times 0.25=0.1\) \\
(B) \(\mathrm{P}(X=30)=\mathrm{P}(10\) and 20\()=0.4 \times 0.25+0.2 \times 0.5=0.2\)
\end{tabular} \& \begin{tabular}{l}
B1 ANSWER GIVEN \\
M1 for full calculation \\
A1 ANSWER GIVEN
\end{tabular} \& \begin{tabular}{l}
[1] \\
[2]
\end{tabular} \\
\hline \& (ii) \& \[
\begin{aligned}
\& \mathrm{E}(\mathrm{X})=10 \times 0.1+15 \times 0.4+20 \times 0.1+25 \times 0.2+30 \times 0.2=20 \\
\& \mathrm{E}\left(\mathrm{X}^{2}\right)= \\
\& \quad 100 \times 0.1+225 \times 0.4+400 \times 0.1+625 \times 0.2+900 \times 0.2=445 \\
\& \operatorname{Var}(X)=445-20^{2}=45
\end{aligned}
\] \& \begin{tabular}{l}
M1 for \(\Sigma \mathrm{rp}\) (at least 3 terms correct) \\
A1 CAO \\
M1 for \(\Sigma r^{2} p\) (at least 3 terms correct) \\
M1 dep for - their \(\mathrm{E}(\mathrm{X})^{2}\) \\
A1 FT their \(\mathrm{E}(\mathrm{X})\) provided \(\operatorname{Var}(\mathrm{X})\) \(>0\) \\
TOTAL
\end{tabular} \& [5]
[8] \\
\hline 3 \& (i)

(ii) \& \begin{tabular}{l}

$$
\mathrm{P}(G) \times \mathrm{P}(R)=0.24 \times 0.13=0.0312 \neq \mathrm{P}(G \cap R) \text { or } \neq 0.06
$$

So not independent.

 \&

G1 for two labelled intersecting circles

G1 for at least 2 correct probabilities

G1 for remaining probabilities

M1 for 0.24×0.13

A1.
\end{tabular} \& [3]

\hline
\end{tabular}

	(iii)	$P(R \mid G)=\frac{P(R \cap G)}{P(G)}=\frac{0.06}{0.24}=\frac{1}{4}=0.25$	M1 for numerator M1 for denominator A1 CAO TOTAL	[3] [8]
4	(i)	$\mathrm{P}(20$ correct $)=\binom{30}{20} \times 0.6^{20} \times 0.4^{10}=0.1152$	M1 $\quad 0.6^{20} \times 0.4^{10}$ M1 $\binom{30}{20} \times p^{20} q^{10}$ A1 CAO	[3]
	(ii)	Expected number $=100 \times 0.1152=11.52$	M1 A1 FT (Must not round to whole number) TOTAL	[2] [5]
5	(i)	$\mathrm{P}($ Guess correctly $)=0.1^{4}=0.0001$	B1 CAO	[1]
	(ii)	$\mathrm{P}($ Guess correctly $)=\frac{1}{4!}=\frac{1}{24}$	M1 A1 CAO TOTAL	$\begin{aligned} & {[2]} \\ & {[3]} \end{aligned}$
6	(i)	$20 \times 19 \times 18=6840$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	[2]
	(ii)	$20^{3}-20=7980$	M1 for figures - 20 A1 TOTAL	[2] [4]

\begin{tabular}{|c|c|c|c|c|}
\hline 8 \& (i) \& \begin{tabular}{l}
(A) \(\mathrm{P}(\) Low on all 3 days \()=0.5^{3}=0.125\) or \(1 / 8\) \\
(B) \(\mathrm{P}(\) Low on at least 1 day \()=1-0.5^{3}=1-0.125=0.875\) \\
(C) \(\mathrm{P}(\) One low, one medium, one high \()\)
\[
=6 \times 0.5 \times 0.35 \times 0.15=0.1575
\]
\end{tabular} \& \begin{tabular}{l}
M1 for \(0.5^{3}\) \\
A1 CAO \\
M1 for \(1-0.5^{3}\) \\
A1 CAO \\
M1 for product of probabilities \(0.5 \times\) \(0.35 \times 0.15\) or \(21 / 800\) \(\mathrm{M} 1 \times 6\) or \(\times 3\) ! or \({ }^{3} \mathrm{P}_{3}\) \\
A1 CAO
\end{tabular} \& [2]
[2]
[3] \\
\hline \& (ii) \& \begin{tabular}{l}
\[
\mathrm{X} \sim \mathrm{~B}(10,0.15)
\] \\
(A) \(\mathrm{P}(\) No days \()=0.85^{10}=0.1969\) \\
Or from tables \(\mathrm{P}(\) No days \()=0.1969\) \\
(B) Either \(\mathrm{P}(1\) day \()=\binom{10}{1} \times 0.15^{1} \times 0.85^{9}=0.3474\) or from tables \(\mathrm{P}(1\) day \()=\mathrm{P}(X \leq 1)-\mathrm{P}(X \leq 0)\) \(=0.5443-0.1969=0.3474\)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \(0.15^{1} \times 0.85^{9}\) \\
M1 \(\binom{10}{1} \times p^{1} q^{9}\) \\
A1 CAO \\
OR: M2 for 0.5443 - \\
0.1969 \\
A1 CAO
\end{tabular} \& [2]

[3]

\hline \& (iii) \& | Let $X \sim \mathrm{~B}(20,0.5)$ |
| :--- |
| Either: $\mathrm{P}(X \geq 15)=1-0.9793=0.0207<5 \%$ |
| Or: Critical region is $\{15,16,17,18,19,20\}$ |
| 15 lies in the critical region. |
| So there is sufficient evidence to reject H_{0} |
| Conclude that there is enough evidence to indicate that the probability of low pollution levels is higher on the new street. |
| H_{1} has this form as she believes that the probability of a low pollution level is greater in this street. | \& | Either: |
| :--- |
| B1 for correct probability of 0.0207 |
| M1 for comparison Or: |
| B1 for CR, |
| M1 for comparison |
| A1 CAO dep on |
| B1M1 |
| E1 for conclusion in context |
| E1 indep | \& | [5] |
| ---: |
| [17] |

\hline
\end{tabular}

4767 Statistics 2

1	(i)		G1 For values of a G1 for values of t G1 for axes	[3]
	(ii)	a is independent, t is dependent since the values of a are not subject to random variation, but are determined by the runways which the pilot chooses, whereas the values of t are subject to random variation.	B1 E1dep E1dep	
	(iii)	$\begin{aligned} & \bar{a}=900, \bar{t}=855.2 \\ & b=\frac{\mathrm{S}_{\mathrm{at}}}{\mathrm{~S}_{\mathrm{aa}}}=\frac{6037800-5987 \times 6300 / 7}{8190000-6300^{2} / 7}=\frac{649500}{2520000}=0.258 \\ & \text { OR } \quad b=\frac{6037800 / 7-855.29 \times 900}{8190000 / 7-900^{2}}=\frac{92785}{360000}=0.258 \end{aligned}$ hence least squares regression line is: $\begin{array}{ll} & t-\bar{t}=b(a-\bar{a}) \\ \Rightarrow & t-855.29=0.258(a-900) \\ \Rightarrow & t=0.258 a+623 \end{array}$	B1 for \bar{a} and \bar{t} used (SOI) M1 for attempt at gradient (b) A1 for 0.258 cao M1 for equation of line A1 FT for complete equation	[5]
	(iv)	(A) For $a=800$, predicted take-off distance $=0.258 \times 800+623=829$ (B) For $a=2500$, predicted take-off distance $=0.258 \times 2500+623=1268$ Valid relevant comments relating to the predictions such as: First prediction is interpolation so should be reasonable Second prediction is extrapolation and may not be reliable	M1 for at least one prediction attempted A1 for both answers (FT their equation if $b>0$) E1 (first comment) E1 (second comment)	[4]
	(v)	$\begin{aligned} & a=1200 \Rightarrow \\ & \text { predicted } t=0.258 \times 1200+623=933 \\ & \text { Residual }=923-933=-10 \end{aligned}$ The residual is negative because the observed value is less than the predicted value.	M1 for prediction M1 for subtraction A1 FT E1 Total	[4] $[19]$

\begin{tabular}{|c|c|c|c|c|}
\hline 2 \& (i) \& \(\mathrm{P}(1\) of 10 is faulty)
\[
=\binom{10}{1} \times 0.02^{1} \times 0.98^{9}=0.1667
\] \& M1 for coefficient M1 for probabilities A1 \& [3] \\
\hline \& (ii) \& \(n\) is large and \(p\) is small \& \begin{tabular}{l}
B1, B1 \\
Allow appropriate numerical ranges
\end{tabular} \& [2] \\
\hline \& (iii) \& \begin{tabular}{l}
\[
\lambda=150 \times 0.02=3
\] \\
(A) \(\quad \mathrm{P}(X=0)=\tilde{\mathrm{e}}^{-3} \frac{3^{0}}{0!}=0.0498\) (3 s.f.) \\
or from tables \(=0.0498\) \\
(B) \(\quad\) Expected number \(=3\) \\
Using tables: \(\mathrm{P}(X>3)=1-\mathrm{P}(X \leq 3)\) \(=1-0.6472=0.3528\)
\end{tabular} \& \begin{tabular}{l}
B1 for mean (soi) \\
M1 for calculation or use of tables \\
A1 \\
B1 expected no \(=3\) (soi) \\
M1 \\
A1
\end{tabular} \& [3] \\
\hline \& (iv) \& \begin{tabular}{l}
(A) Binomial \((2000,0.02)\) \\
(B) Use Normal approx with
\[
\begin{aligned}
\& \mu=n p=2000 \times 0.02=40 \\
\& \sigma^{2}=n p q=2000 \times 0.02 \times 0.98=39.2
\end{aligned}
\]
\[
\begin{aligned}
\& \mathrm{P}(X \leq 50)=\mathrm{P}\left(Z \leq \frac{50.5-40}{\sqrt{39.2}}\right) \\
\& =\mathrm{P}(Z \leq 1.677)=\Phi(1.677)=0.9532
\end{aligned}
\] \\
NB Poisson approximation also acceptable for full marks
\end{tabular} \& \begin{tabular}{l}
B1 for binomial \\
B1 for parameters \\
B1 \\
B1 \\
B1 for continuity corr. \\
M1 for probability using correct tail \\
A1 CAO
\end{tabular} \& \([2]\)

$[5]$
$[18]$

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 3 \& (i) \& \begin{tabular}{l}
(A)
\[
\begin{aligned}
\& \mathrm{P}(X<50) \\
= \& \mathrm{P}\left(Z<\frac{50-45.3}{11.5}\right) \\
= \& \mathrm{P}(Z<0.4087) \\
= \& \Phi(0.4087) \\
= \& 0.6585
\end{aligned}
\] \\
(B)
\[
\begin{aligned}
\& \mathrm{P}(45.3<X<50) \\
\& =0.6585-0.5 \\
\& =0.1585
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 for standardising \\
M1 for correct structure of probability calc' \\
A1 CAO inc use of diff tables \\
NB When a candidate's answers suggest that (s)he appears to have neglected to use the difference column of the Normal distribution tables penalise the first occurrence only \\
M1 \\
A1
\end{tabular} \& [3]

[2]

\hline \& (ii) \& \[
$$
\begin{aligned}
& \text { From tables } \Phi^{-1}(0.9)=1.282 \\
& \frac{k-45.3}{11.5}=1.282 \\
& k=45.3+1.282 \times 11.5=60.0
\end{aligned}
$$

\] \& | B1 for 1.282 seen |
| :--- |
| M1 for equation in k |
| A1 CAO | \& [3]

\hline \& (iii) \& \[
$$
\begin{aligned}
& \mathrm{P}(\text { score }=111) \\
& =\mathrm{P}(110.5<Y<111.5) \\
& \begin{aligned}
&=\mathrm{P}\left(\frac{110.5-100}{15}<Z<\frac{111.5-100}{15}\right) \\
&=\mathrm{P}(0.7<Z<0.7667) \\
&=\Phi(0.7667)-\Phi(0.7) \\
&=0.7784-0.7580 \\
&=0.0204
\end{aligned}
\end{aligned}
$$

\] \& | B1 for both continuity corrections |
| :--- |
| M1 for standardising |
| M1 for correct structure of probability calc' |
| A1 CAO | \& [4]

\hline \& (iv) \& From tables,

\[
$$
\begin{aligned}
& \Phi^{-1}(0.3)=-0.5244, \Phi^{-1}(0.8)=0.8416 \\
& 22=\mu+0.8416 \sigma \\
& 15=\mu-0.5244 \sigma \\
& 7=1.3660 \sigma \\
& \sigma=5.124, \mu=17.69
\end{aligned}
$$

\] \& | B1 for 0.5244 or 0.8416 seen |
| :--- |
| M1 for at least one equation in $\mathrm{z}, \mu \& \sigma$ |
| A1 for both correct |
| M1 for attempt to solve two appropriate equations |
| A1 CAO for both | \& [5]

\hline \& \& \& \& [17]

\hline
\end{tabular}

4	(i)	H_{0} : no association between size of business and recycling service used. H_{1} : some association between size of business and recycling service used.	B1 for both	[1]
	(ii)	$\begin{aligned} & \text { Expected frequency }=78 / 285 \times 180=49.2632 \\ & \begin{aligned} \text { Contribution } & =(52-49.2632)^{2} / 49.2632 \\ & =0.1520 \end{aligned} \end{aligned}$	M1 A1 M1 for valid attempt at $(O-E)^{2} / \mathrm{E}$ A1 NB Answer given Allow 0.152	[4]
	(iii)	Test statistic $X^{2}=0.6041$ Refer to $\mathcal{X}_{2}{ }^{2}$ Critical value at 5% level $=5.991$ Result is not significant There is no evidence to suggest any association between size of business and recycling service used. NB if $\mathrm{H}_{0} \mathrm{H}_{1}$ reversed, or 'correlation' mentioned in part (i), do not award B1in part (i) or E1 in part (iii).	B1 B1 for 2 deg of $f($ seen $)$ B1 CAO for cv B1 for not significant E1	[5]
	(iv)	$\mathrm{H}_{0}: \mu=32.8 ; \quad \mathrm{H}_{1}: \mu<32.8$ Where μ denotes the population mean weight of rubbish in the bins. Test statistic $=\frac{30.9-32.8}{3.4 / \sqrt{50}}=-\frac{1.9}{0.4808}=-3.951$ 5% level 1 tailed critical value of $z=-1.645$ $-3.951<-1.645$ so significant. There is sufficient evidence to reject H_{0} There is evidence to suggest that the weight of rubbish in dustbins has been reduced.	B1 for use of 32.8 B1 for both correct B1 for definition of μ M1 must include $\sqrt{ } 50$ A1 B1 for ± 1.645 M1 for sensible comparison leading to a conclusion A1 for conclusion in words in context TOTAL	[8] $[18]$

4768 Statistics 3

1 (i)	H_{0} : The number of by $\mathrm{B}(3,1 / 2)$ H_{1} : The number of modelled by $\mathrm{B}($ Refer to χ_{3}^{2}. Upper 5\% point is 7 Significant. Suggests it is reason $=1 / 2$ does not ap	hatched hatched $0333+$. to supp	be model ot be model wit	B1 B1 0.375 30 29 M1 A1 M1 A1 M1 A1 A1 A1	0.125 10 Probs $\times 80$ for expected frequencies. All correct. Calculation of X^{2}. c.a.o. Allow correct df (= cells -1) from wrongly grouped table and ft . Otherwise, no ft if wrong. $\mathrm{P}\left(X^{2}>14.667\right)=0.00212$. No ft from here if wrong. ft only c's test statistic. ft only c 's test statistic.	[10]
(ii)	$\begin{aligned} & \bar{x}=\frac{144}{80}=1.8 \\ & \therefore \hat{p}=\frac{1.8}{3}=0.6 \end{aligned}$			B1 B1	C.a.o. Use of $\mathrm{E}(X)=n p$. ft c's mean, provided $0<\hat{p}<1$.	[2]
(iii)	Refer to χ_{2}^{2}. Upper 5\% point is 5 Suggests it is reaso estimated p does ap	to sup	odel with	M1 A1 A1	Allow df 1 less than in part (i). No ft if wrong. No ft if wrong. ft provided previous A mark awarded.	[3]
(iv)	For example: Estimating p leads \ldots at the expense of freedom. The model in (i) fai underestimate for X	improv loss of ue to a la	ree of	E2	Reward any two sensible points for E1 each. Total	$[2]$ $[17]$

\begin{tabular}{|c|c|c|c|c|}
\hline \[
2 \text { (a) }
\]
(i) \& \[
\begin{aligned}
\& \mathrm{f}(x)=\frac{1}{72}\left(8 x-x^{2}\right), 2 \leq x \leq 8 \\
\& \mathrm{~F}(x)=\int_{2}^{x} \frac{1}{72}\left(8 t-t^{2}\right) \mathrm{d} t \\
\& =\frac{1}{72}\left[4 t^{2}-\frac{t^{3}}{3}\right]_{2}^{x} \\
\& =\frac{1}{72}\left(4 x^{2}-\frac{x^{3}}{3}-16+\frac{8}{3}\right)=\frac{12 x^{2}-x^{3}-40}{216}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Correct integral with limits (which may be implied subsequently). \\
Correctly integrated \\
Limits used. \\
Accept unsimplified form.
\end{tabular} \& [3] \\
\hline (ii) \& \& G1
G1
G1 \& \begin{tabular}{l}
Correct shape; nothing below \(y=0\); non-negative gradient. \\
Labels at \((2,0)\) and \((8,1)\). \\
Curve (horizontal lines) shown for \(x<2\) and \(x>8\).
\end{tabular} \& [3] \\
\hline (iii) \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{F}(m)=1 / 2 \quad \therefore \frac{12 m^{2}-m^{3}-40}{216}=\frac{1}{2} \\
\& \therefore 12 m^{2}-m^{3}-40=108 \\
\& \therefore m^{3}-12 m^{2}+148=0
\end{aligned}
\] \\
Either
\[
\mathrm{F}(4.42)=0.5003(977) \approx 0.5
\] \\
Or
\[
\begin{aligned}
\& 4.42^{3}-12 \times 4.42^{2}+148=-0.0859(12) \approx 0 \\
\& \therefore m \approx 4.42
\end{aligned}
\]
\end{tabular} \& M1
A1

E1 \& | Use of definition of median. Allow use of c's F (x). |
| :--- |
| Convincingly rearranged. |
| Beware: answer given. |
| Convincingly shown, e.g. 4.418 or better seen. | \& [3]

\hline
\end{tabular}

2 (b) $\quad \mathrm{H}_{0}: m=4.42 \quad \mathrm{H}_{1}: m \neq 4.42$
where m is the population median

Weights	-4.42	Rank of (diff
3.16	-1.26	7
3.62	-0.80	6
3.80	-0.62	4
3.90	-0.52	3
4.02	-0.40	2
4.72	0.30	1
5.14	0.72	5
6.36	1.94	8
6.50	2.08	9
6.58	2.16	10
6.68	2.26	11
6.78	2.36	12

$W_{-}=2+3+4+6+7=22$
Refer to Wilcoxon single sample tables for $n=12$.
Lower $2 \frac{1}{2} \%$ point is 13 (or upper is 65 if 56 used).
Result is not significant.
Evidence suggests that a median of 4.42 is consistent with these data.

B1 Both. Accept hypotheses in words.
B1 Adequate definition of m to include "population".

M1 for subtracting 4.42.
M1 for ranks.
A1 ft if ranks wrong.

B1 $\left(W_{+}=1+5+8+9+10+11+12\right.$ = 56)
M1
No ft from here if wrong.
A1
i.e. a 2-tail test. No ft from here if wrong.
A1 ft only c's test statistic.
A1 ft only c's test statistic.
Total
[19]

\begin{tabular}{|c|c|c|c|c|}
\hline 3 (i) \& \begin{tabular}{l}
Must assume \\
- Normality of population ... \\
- \(\quad .\). of differences. \\
\(\mathrm{H}_{0}: \mu_{D}=0\) \\
\(\mathrm{H}_{1}: \mu_{D}>0\) \\
Where \(\mu_{D}\) is the (population) mean reduction/difference in cholesterol level. \\
MUST be PAIRED COMPARISON \(t\) test. Differences (reductions) (before - after) are:
\[
\begin{array}{llllllll}
-0.1 \& 1.7 \& -1.2 \& 1.1 \& 1.4 \& 0.5 \& 0.9 \& 2.2 \\
-0.1 \& 2.0 \& 0.7 \& 0.3 \& \& \& \& \\
\bar{x}=0.7833 \& s_{n-1}=0.9833(46) \& \left(s_{n-1}{ }^{2}=0.966969\right)
\end{array}
\] \\
Test statistic is \(\frac{0.7833-0}{\frac{0.9833}{\sqrt{ } 12}}\) \\
Refer to \(t_{11}\). \\
Single-tailed 1\% point is 2.718 . Significant. \\
Seems mean cholesterol level has fallen.
\end{tabular} \& B1
B1
B1
l \& \begin{tabular}{l}
Both. Accept alternatives e.g. \(\mu_{D}<\) 0 for \(\mathrm{H}_{1}\), or \(\mu_{B}-\mu_{A}\) etc provided adequately defined. Hypotheses in words only must include "population". Do NOT allow \\
" \(\bar{X}=\ldots\) " or similar unless \(\bar{X}\) is clearly and explicitly stated to be a population mean. \\
For adequate verbal definition. Allow absence of "population" if correct notation \(\mu\) is used. \\
Allow "after - before" if consistent with alternatives above. \\
Do not allow \(s_{\mathrm{n}}=0.9415\left(s_{n}{ }^{2}=\right.\) 0.8864) \\
Allow c's \(\bar{x}\) and/or \(s_{n-1}\). \\
Allow alternative: \(0+(\) c's 2.718\() \times\) \(\frac{0.9833}{\sqrt{ } 12}(=0.7715)\) for subsequent comparison with \(\bar{x}\).
\[
\left(\text { Or } \bar{x}-\left(c^{\prime} \operatorname{s} 2.718\right) \times \frac{0.9833}{\sqrt{12}}\right.
\] \\
(=0.0118) for comparison with 0 .) c.a.o. but ft from here in any case if wrong. \\
Use of \(0-\bar{x}\) scores M1A0, but ft . \\
No ft from here if wrong. \(\mathrm{P}(t>2.7595)=0.009286\). \\
No ft from here if wrong. \\
ft only c's test statistic. \\
ft only c's test statistic.
\end{tabular} \& [11] \\
\hline (ii) \& \begin{tabular}{l}
CI is \(\bar{x} \pm\)
\[
\begin{aligned}
\& 2.201 \\
\& \times \frac{s}{\sqrt{12}}=(-0.5380,1.4046) \\
\& \bar{x}=1 / 2(1.4046-0.5380)=0.4333 \\
\& s=(1.4046-0.4333) \times \frac{\sqrt{12}}{2.201} \quad=1.5287
\end{aligned}
\] \\
Using this interval the doctor might conclude that the mean cholesterol level did not seem to have been reduced.
\end{tabular} \& M1
B1
A1

B1
B1
M1
A1

E1 \& | Overall structure, seen or implied. |
| :--- |
| From t_{11}, seen or implied. |
| Fully correct pair of equations using the given interval, seen or implied. |
| Substitute \bar{x} and rearrange to find s. c.a.o. |
| Accept any sensible comment or interpretation of this interval. | \& [7]

\hline
\end{tabular}

(i)	$\begin{aligned} & A \sim \mathrm{~N}(80, \sigma=11) \\ & B \sim \mathrm{~N}(70, \sigma=v) \end{aligned}$ $\begin{aligned} \mathrm{P}(A<90) & =\mathrm{P}\left(Z<\frac{90-80}{11}=0.9091\right) \\ & =0.8182 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only. For standardising. Award once, here or elsewhere. c.a.o.	[3]
(ii)	$\begin{gathered} W_{B}=B_{1}+B_{2}+\ldots+B_{6}+15 \sim \mathrm{~N}(435, \\ \\ \left.\sigma^{2}=v^{2}+v^{2}+\ldots+v^{2}=6 v^{2}\right) \\ \mathrm{P}(\text { this }<450)=\mathrm{P}\left(Z<\frac{450-435}{v \sqrt{6}}\right)=0.8463 \\ \therefore \frac{450-435}{v \sqrt{6}}=\Phi^{-1}(0.8463)=1.021 \\ \therefore v=\frac{15}{1.021 \times \sqrt{6}}=5.9977=6 \text { grams (nearest gram) } \end{gathered}$	B1 B1 M1 B1 A1	Mean. Expression for variance. Formulation of the problem. Inverse Normal. Convincingly shown, beware A.G.	[5]
(iii)	$\begin{gathered} W_{A}=A_{1}+A_{2}+\ldots+A_{5}+25 \sim \mathrm{~N}(425 \\ \left.\quad \sigma^{2}=11^{2}+11^{2}+\ldots+11^{2}=605\right) \\ D=W_{A}-W_{B} \sim \mathrm{~N}(-10, \\ \quad 605+216=821) \end{gathered}$ Want $\mathrm{P}\left(W_{A}>W_{B}\right)=\mathrm{P}\left(W_{A}-W_{B}>0\right)$ $=\mathrm{P}\left(Z>\frac{0-(-10)}{\sqrt{821}}=0.3490\right)=1-0.6365=0.3635$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Mean. Accept " $B-A$ ". Variance. Accept sd (=28.65). c.a.o.	[5]
(iv)	$\begin{aligned} & \bar{x}=\frac{3126.0}{60}=52.1, \\ & s=\sqrt{\frac{164223.96-60 \times 52.1^{2}}{59}}=4.8 \end{aligned}$ CI is given by $\begin{array}{cc} 52.1 \pm & \\ & 1.96 \\ & \times \frac{4.8}{\sqrt{60}} \\ =52.1 \pm 1.2146=(50.885(4), 53.314(6)) \end{array}$	B1 M1 B1 M1 A1	Both correct. c.a.o. Must be expressed as an interval. Total	[5] [18]

4771 Decision Mathematics 1

1	$\begin{aligned} & \text { (i) } \\ & \& \\ & \text { (ii) } \end{aligned}$	Critical activities: A and D	M1 activity-on- arc A1 C and E OK A1 D OK M1 forward A1 pass M1 backward A1 pass B1
2	(i)		M1 subgraph A1 M1 Changing colours A1 top right A1 bottom left A1 not singletons B1
	(ii)	The rule does not specify a well-defined and terminating set of actions.	B1

3	(i)	No repeated arcs. No loops	B1 B1
	(ii)	Two disconnected sets, $\{\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{F}\}$ and $\{\mathrm{C}, \mathrm{E}, \mathrm{G}, \mathrm{H}\}$	M1 A1
	(iii)		M1 A1 B1
	(iv)	$4 \times 4=16$ or $\binom{8}{2}-12=28-12=16$	B1

| (i) | e.g.
 Let x be the number of adult seats sold.
 Let y be the number of child seats sold.
 $x+y \leq 120$
 $x+y \geq 100$
 $x \geq y$ | | M1 | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (vi) | | | | |

5	$\begin{aligned} & \hline \text { (i) } \\ & \& \\ & \text { (ii) } \end{aligned}$	shortest route: A EC F distance: $\quad 26$ miles	M1 network A1 arcs A1 lengths M1 Dijkstra A1 working values B1 order of labelling B1 labels
	(iii)	CE CD AE CF AD BF AR EK total length of connector $=45$	M1 5 arc connector A1 AD not included A1 all OK, inc order B1 B1
	(iv)	$\begin{array}{\|ll} \text { A } & 3 \text { miles }(\text { or length }=9) \\ \text { B } & 2 \text { miles }(\text { or length }=10) \end{array}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 6 \& (i) \& \multicolumn{4}{|l|}{\[
\begin{array}{|ll}
\hline \text { e.g. } \& 0,1,2 \rightarrow \text { fall } \\
\& 3,4,5,6,7,8 \rightarrow \text { not fall } \\
\& 9 \rightarrow \text { redraw }
\end{array}
\]} \& \& ignore at leas proportions correct efficient \\
\hline \& (ii) \& \begin{tabular}{l}
apple \\
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
Three
\end{tabular} \& \[
\begin{aligned}
\& \text { r n } \\
\& 1 \\
\& 3 \\
\& 3 \\
\& 8 \\
\& 0 \\
\& 2 \\
\& 7 \\
\& 7 \\
\& \text { es fall ir }
\end{aligned}
\] \& \begin{tabular}{l}
fall? \\
yes \\
no \\
no \\
yes \\
yes \\
no \\
mulation
\end{tabular} \& \& M1
A2

B1 \& -1 each error

\hline \& (iii) \& | apple |
| :--- |
| 2 |
| 3 |
| 6 |
| apple |
| 6 |
| apple |
| 6 |
| apple |
| 6 | \& \[

$$
\begin{aligned}
& \mathrm{rn} \\
& 0 \\
& 1 \\
& 4 \\
& \\
& \mathrm{rn} \\
& 4 \\
& \\
& \mathrm{rn} \\
& 8 \\
& \\
& \\
& \mathrm{rn} \\
& 0
\end{aligned}
$$

\] \& | fall? |
| :--- |
| yes |
| yes |
| no |
| fall? |
| no |
| fall? |
| no |
| fall? |
| yes | \& before all have fallen \& M1

A2

A1 \& -1 each error

\hline \& (iv) \& apple
1
2
3
4
5
6
apple
3
4
apple

4 \& \begin{tabular}{l}
rn

1

3

8

0

2

rn

7

rn

 \&

fall?

picked

yes

no

no

yes

yes

fall?

picked

no

fall?

picked
\end{tabular} \& 3 days before none left \& \& -1 each error

\hline \& (v) \& more \& ations \& \& \& B1 \&

\hline
\end{tabular}

4776 Numerical Methods

1

x	LHS	
1.3	2.868415	<3
1.5	3.181981	>3

mpe (may be implied)
$1.4 \quad 3.017945$
0.1
$1.35 \quad 2.941413$
0.05
$1.375 \quad 2.979232 \quad 0.025$
mpe: $\quad 0.006250 .0031250 .0015630 .000781<0.001$ so 4 more iterations [M1A1]

$\mathbf{2}$	h	M	T	S
	1	2.579768	2.447490	$\mathbf{2 . 5 3 5 6 7 5}$

T	$[$ [M1A1]
S	$[$ M1A1A1]

$\begin{array}{llll}0.5 & 2.547350 & \mathbf{2 . 5 1 3 6 2 9} & \mathbf{2 . 5 3 6 1 1 0}\end{array}$
[E1A1]
2.536 secure by comparison of S values.
[TOTAL 7]

3(i) $\mathrm{f}^{\prime}(x)=3 x^{2}-2 x \quad$ so $\mathrm{f}^{\prime}(0.5)=-0.25$
[B1B1]
$\mathrm{f}(0.5)=0.875$ hence given result
[B1]
(ii) Require $-0.0005<0.25 h<0.0005$

Hence $-0.002<h<0.002$
And so $0.498<x<0.502$

4(i) Convincing algebra to given result
[M1A1]
(ii) Eg $k=1000$ correct evaluation to 2 [B1]
$k=1000000$ incorrect evaluation to zero (NB some will need larger k) [B1]

Mathematically equivalent expressions do not always evaluate equally

(because calculators do not store (large) numbers exactly)

Subtraction of nearly equal quantities often causes problems

5(i)

x	$\mathrm{f}(x)$	$\Delta \mathrm{f}(x)$	$\Delta^{2} \mathrm{f}(x)$	$\Delta^{3} \mathrm{f}(x)$
0	1.883			
1	2.342	0.459		
2	2.874	0.532	0.073	
3	3.491	0.617	0.085	0.012
4	4.206	0.715	0.098	0.013
		3rd diffs almost constant		

1st diff:
2nd, 3rd

[M1A1]

[F1]
(ii) $\mathrm{f}(1.5)=1.883+0.459 \times 1.5+0.073 \times 1.5 \times 0.5 / 2!+0.012 \times 1.5 \times 0.5 \times(-0.5) / 3$!

6 (i) Sketch of smooth curve and its tangent.
Forward and central difference chords.
Clear statement or implication that the central difference chord has gradient closer to that of the tangent
[subtotal 4]
(ii)

h	$\tan 60^{\circ}$	$\tan (60+h)^{\circ}$
2	1.732051	1.880726
1	1.732051	1.804048
0.5	1.732051	1.767494

derivative
0.074338
0.071997
0.070886
[M1A1]
[A1]
[A1]
[subtotal 4]
(iii) h

2
1
0.5

$\tan (60+h)^{\circ}$	$\tan (60-h)^{\circ}$
1.880726	1.600335
1.804048	1.664279
1.767494	1.697663

derivative
0.070098
0.069884
0.069831
[M1A1]
[A1]
[A1]
[subtotal 4]
(iv) forward difference:

$$
\begin{array}{cccc}
\text { derivative } & \text { diffs } & \begin{array}{r}
\text { ratio } \\
\text { of diffs }
\end{array} & \\
0.074338 & & & \\
0.071997 & -0.00234 & & \\
0.070886 & -0.00111 & 0.474407 & \text { (about 0.5, may be implied) }
\end{array}
$$

[M1A1A1]

central difference:	derivative	diffs	ratio of diffs		
	0.070098				
	0.069884	-0.00021			
	0.069831	$-5.3 \mathrm{E}-05$	0.24896	(about 0.25, less than	[M1A1E1]
			forward difference, hence faster)	[subtotal 6]	
[TOTAL 18]					

7 (i) Sketch showing $y=3 \sin x$ and $y=x$ with intersection in $(1 / 2 \pi, \pi)$
State or show that there is only one other non-zero root
(ii) $\begin{array}{rrrrrrr}r & 0 & 1 & 2 & 3 & 4 & 5 \\ & x_{r} & 2 & 2.727892 & 1.206001 & 2.80259 & 0.997639\end{array} 2.52058$
(iii) Convincing algebra to given result.

r	0	1	2	3	4	5
x_{r}	2	2.242631	2.277768	2.278844	2.278862	2.278863

[M1A1A1]
Root appears to be 2.27886 to 5 dp

x	$\sin x+2 / 3 x$
2.278855	<2.2788625
2.278865	>2.2788627

[M1A1E1]

Grade Thresholds

Advanced GCE Mathematics 38957895
January 2010 Examination Series
Unit Threshold Marks

Unit		Maximum Mark	A	B	C	D	E	U
All units	UMS	100	80	70	60	50	40	0
$\mathbf{4 7 5 1}$	Raw	72	52	46	40	34	28	0
$\mathbf{4 7 5 2}$	Raw	72	59	52	45	38	32	0
$\mathbf{4 7 5 3 / 0 1}$	Raw	72	57	50	43	36	29	0
$\mathbf{4 7 5 3 / 0 2}$	Raw	18	15	13	11	9	8	0
$\mathbf{4 7 5 4}$	Raw	90	74	65	56	48	40	0
$\mathbf{4 7 5 5}$	Raw	72	55	47	39	31	24	0
$\mathbf{4 7 5 6}$	Raw	72	54	46	39	32	25	0
$\mathbf{4 7 5 8}$	Raw	72	61	53	45	37	29	0
$\mathbf{4 7 5 8 / 0 2}$	Raw	18	15	13	11	9	8	0
$\mathbf{4 7 6 1}$	Raw	72	58	49	41	33	25	0
$\mathbf{4 7 6 2}$	Raw	72	62	54	46	38	31	0
$\mathbf{4 7 6 3}$	Raw	72	64	56	48	41	34	0
$\mathbf{4 7 6 6 / G 2 4 1}$	Raw	72	58	50	42	35	28	0
$\mathbf{4 7 6 7}$	Raw	72	62	54	46	39	32	0
$\mathbf{4 7 6 8}$	Raw	72	55	48	41	34	27	0
$\mathbf{4 7 7 1}$	Raw	72	60	53	46	39	33	0
$\mathbf{4 7 7 6 / 0 1}$	Raw	72	60	53	46	40	33	0
$\mathbf{4 7 7 6 / 0 2}$	Raw	18	14	12	10	8	7	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
$\mathbf{7 8 9 5 - 7 8 9 8}$	600	480	420	360	300	240	0
$\mathbf{3 8 9 5 - 3 8 9 8}$	300	240	210	180	150	120	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	U	Total Number of Candidates
$\mathbf{7 8 9 5}$	27.9	61.3	84.3	95.7	98.7	100	395
$\mathbf{7 8 9 6}$	54.3	62.9	88.6	100	100	100	35
$\mathbf{7 8 9 7}$							0
$\mathbf{7 8 9 8}$							0
$\mathbf{3 8 9 5}$	27.1	54.1	74.2	88.2	97.3	100	947
$\mathbf{3 8 9 6}$	41.3	67.5	86.3	95	100	100	80
$\mathbf{3 8 9 7}$	100	100	100	100	100	100	1
$\mathbf{3 8 9 8}$	50	50	100	100	100	100	2

For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums results.html
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)

1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

