

Mathematics (MEI)

Advanced GCE A2 7895-8

Advanced Subsidiary GCE AS 3895-8

Mark Schemes for the Units

January 2010

3895-8/7895-8/MS/10J

mun. my maths cloud com

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

MMN. MY MATHS COUNT. COM

CONTENTS

Advanced GCE Further Mathematics (MEI) (7896)
Advanced GCE Further Mathematics (Additional) (MEI) (7897)
Advanced GCE Mathematics (MEI) (7895)
Advanced GCE Pure Mathematics (MEI) (7898)

Advanced Subsidiary GCE Further Mathematics (MEI) (3896)
Advanced Subsidiary GCE Further Mathematics (Additional) (MEI) (3897)
Advanced Subsidiary GCE Mathematics (MEI) (3895)
Advanced Subsidiary GCE Pure Mathematics (MEI) (3898)

MARK SCHEMES FOR THE UNITS

Unit/Content	Page
4751 (C1) Introduction to Advanced Mathematics	1
4752 (C2) Concepts for Advanced Mathematics	7
4753 (C3) Methods for Advanced Mathematics	10
4754 (C4) Applications of Advanced Mathematics	14
4755 (FP1) Further Concepts for Advanced Mathematics	19
4756 (FP2) Further Methods for Advanced Mathematics	24
4758 Differential Equations	29
4761 Mechanics 1	33
4762 Mechanics 2	38
4763 Mechanics 3	42
4766 Statistics 1	46
4767 Statistics 2	50
4768 Statistics 3	54
4771 Decision Mathematics 1	59
4776 Numerical Methods	64
Grade Thresholds	67

4751 Mark Scheme

4751 (C1) Introduction to Advanced Mathematics

		2	_	T
1		$[a=]2c^2-b \text{ www o.e.}$	3	M1 for each of 3 complete correct steps, ft from previous error if
				equivalent difficulty
2		5x - 3 < 2x + 10	M1	condone '=' used for first two Ms M0 for just $5x - 3 < 2(x + 5)$
		3x < 13	M1	or $-13 < -3x$ or ft
		$x < \frac{13}{3}$ o.e.	M1	or ft; isw further simplification of 13/3; M0 for just $x < 4.3$
3	(i)	(4, 0)	1	allow $y = 0$, $x = 4$ bod B1 for $x = 4$ but do not isw: 0 for $(0, 4)$ seen 0 for $(4, 0)$ and $(0, 10)$ both given (choice) unless $(4, 0)$ clearly identified as the x -axis intercept
3	(ii)	5x + 2(5 - x) = 20 o.e.	M1	for subst or for multn to make coeffts same and appropriate addn/subtn; condone one error
		(10/3, 5/3) www isw	A2	or A1 for $x = 10/3$ and A1 for $y = 5/3$ o.e. isw; condone 3.33 or better and 1.67 or better
				A1 for (3.3, 1.7)
4	(i)	translation	B1	0 for shift/move
		by $\begin{pmatrix} -4\\0 \end{pmatrix}$ or 4 [units] to left	B1	or 4 units in negative <i>x</i> direction o.e.
4	(ii)	sketch of parabola right way up and with minimum on negative <i>y</i> -axis	B1	mark intent for both marks
		min at $(0, -4)$ and graph through -2 and 2 on x -axis	B1	must be labelled or shown nearby
5	(i)	$\frac{1}{12}$ or $\pm \frac{1}{12}$	2	M1 for $\frac{1}{144^{\frac{1}{2}}}$ o.e. or for $\sqrt{144} = 12$ soi
5	(ii)	denominator = 18	B1	B0 if 36 after addition
		numerator = $5 - \sqrt{7} + 4(5 + \sqrt{7})$	M1	for M1, allow in separate fractions
		$= 25 + 3\sqrt{7}$ as final answer	A1	allow B3 for $\frac{25+3\sqrt{7}}{18}$ as final answer www

				mm. Mr.	22
475	51	Mark 9	Scheme	January 201	Ath Aths
6	(i)	cubic correct way up and with two turning pts touching x-axis at -1, and through it at 2.5 and no other intersections	B1 B1	intns must be shown labelled or worked out nearby	NAME OF THE SCIOUS CON
		y- axis intersection at −5	B1		
6	(ii)	$2x^3 - x^2 - 8x - 5$	2	B1 for 3 terms correct or M1 for correct expansion of product of two of the given factors	
7		attempt at $f(-3)$ -27 + 18 - 15 + k = 6 k = 30	M1 A1	or M1 for long division by $(x + 3)$ as far as obtaining $x^2 - x$ and A1 for obtaining remainder as $k - 24$ (but see below) equating coefficients method: M2 for $(x + 3)(x^2 - x + 8)$ [+6] o.e. (from inspection or division) eg M2 for obtaining $x^2 - x + 8$ as quotient in division	
8		$x^{3} + 15x + \frac{75}{x} + \frac{125}{x^{3}}$ www isw or $x^{3} + 15x + 75x^{-1} + 125x^{-3}$ www isw	4	B1 for both of x^3 and $\frac{125}{x^3}$ or $125x^{-3}$ isw and M1 for 1 3 3 1 soi; A1 for each of $15x$ and $\frac{75}{x}$ or $75x^{-1}$ isw or SC2 for completely correct unsimplified answer	

			nm. Mr.	M. Mains Cloud Com
4751	Mark !	Scheme	e January 201	arth atths
9	$x^2 - 5x + 7 = 3x - 10$	M1	or attempt to subst $(y + 10)/3$ for x	ocloud.
	$x^{2} - 8x + 17 = 0$ o.e or $y^{2} - 4y + 13 = 0$ o.e	M1	condone one error; allow M1 for $x^2 - 8x = -17$ [oe for y] only if they go on to completing square method	4.COM
	use of $b^2 - 4ac$ with numbers subst (condone one error in substitution) (may be in quadratic formula)	M1	or $(x-4)^2 = 16 - 17$ or $(x-4)^2 + 1 = 0$ (condone one error)	
	$b^2 - 4ac = 64 - 68 \text{ or } -4 \text{ cao}$ [or $16 - 52 \text{ or } -36 \text{ if } y \text{ used}$]	A1	or $(x-4)^2 = -1$ or $x = 4 \pm \sqrt{-1}$ [or $(y-2)^2 = -9$ or $y = 2 \pm \sqrt{-9}$]	
	[< 0] so no [real] roots [so line and curve do not intersect]	A1	or conclusion from comp. square; needs to be explicit correct conclusion and correct ft; allow '< 0 so no intersection' o.e.; allow '-4 so no roots' etc	
			allow A2 for full argument from sum of two squares = 0; A1 for weaker correct conclusion	
			some may use the condition $b^2 < 4ac$ for no real roots; allow equivalent marks, with first A1 for $64 < 68$ o.e.	
10 (i)	grad CD = $\frac{5-3}{3-(-1)} \left[= \frac{2}{4} \text{ o.e.} \right]$ isw	M1	NB needs to be obtained independently of grad AB	
	grad AB = $\frac{3 - (-1)}{6 - (-2)}$ or $\frac{4}{8}$ isw	M1		
	same gradient so parallel www	A1	must be explicit conclusion mentioning 'same gradient' or 'parallel'	
			if M0, allow B1 for 'parallel lines have same gradient' o.e.	
10 (ii)	[BC ² =] $3^2 + 2^2$ [BC ² =] 13 showing AD ² = $1^2 + 4^2$ [=17] [\neq BC ²] isw	M1 A1 A1	accept $(6-3)^2 + (3-5)^2$ o.e. or [BC =] $\sqrt{13}$ or [AD =] $\sqrt{17}$	
			or equivalent marks for finding AD or AD ² first	
			alt method: showing AC ≠ BD – mark equivalently	

4751	Morle	Scheme	nnn ny	Mathe Cloud Com
10 (iii)	[BD eqn is] $y = 3$	M1	eg allow for 'at M, $y = 3$ ' or for 3 subst in eqn of AC	ainscloud.
	eqn of AC is $y - 5 = 6/5 \times (x - 3)$ o.e [$y = 1.2x + 1.4$ o.e.]	M2	or M1 for grad AC = $6/5$ o.e. (accept unsimplified) and M1 for using their grad of AC with coords of A(-2 , -1) or C (3, 5) in eqn of line or M1 for 'stepping' method to reach M	On
	M is (4/3, 3) o.e. isw	A1	allow: at M, $x = 16/12$ o.e. [eg =4/3] isw A0 for 1.3 without a fraction answer seen	
10 (iv)	midpt of BD = $(5/2, 3)$ or equivalent simplified form cao	M1	or showing BM \neq MD oe [BM = 14/3, MD = 7/3]	
	midpt AC = (1/2, 2) or equivalent simplified form cao or 'M is 2/3 of way from A to C'	M1	or showing AM \neq MC or AM ² \neq MC ²	
	conclusion 'neither diagonal bisects the other'	A1	in these methods A1 is dependent on coords of M having been obtained in part (iii) or in this part; the coordinates of M need not be correct; it is also dependent on midpts of both AC and BD attempted, at least one correct	
			alt method: show that mid point of BD does not lie on AC (M1) and vice-versa (M1), A1 for both and conclusion	

			mn y	
4751	Mark	Scheme	January 201	
11 (i)	centre C' = $(3, -2)$ radius 5	1 1	January 201 January 201 O for ±5 or -5	3
11 (ii)	showing $(6-3)^2 + (-6+2)^2 = 25$	B1	interim step needed	
	showing that $\overrightarrow{AC'} = \overrightarrow{C'B} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$ o.e.	В2	or B1 each for two of: showing midpoint of AB = (3, -2); showing B (0, 2) is on circle; showing AB = 10	
			or B2 for showing midpoint of AB = (3, -2) and saying this is centre of circle	
			or B1 for finding eqn of AB as $y = -4/3 x + 2$ o.e. and B1 for finding one of its intersections with the circle is $(0, 2)$	
			or B1 for showing C'B = 5 and B1 for showing AB = 10 or that AC' and BC' have the same gradient	
			or B1 for showing that AC' and BC' have the same gradient and B1 for showing that B (0, 2) is on the circle	
11 (iii)	grad AC' or AB = $-4/3$ o.e.	M1	or ft from their C', must be evaluated	
	grad $tgt = -1/their AC'$ grad	M1	may be seen in eqn for tgt; allow M2 for grad tgt = $\frac{3}{4}$ oe soi as first step	
	y - (-6) = their m(x - 6) o.e.	M1	or M1 for $y =$ their $m \times x + c$ then subst $(6, -6)$	
	y = 0.75x - 10.5 o.e. isw	A1	eg A1 for $4y = 3x - 42$	
			allow B4 for correct equation www isw	
11 (iv)	centre C is at (12, -14) cao	B2	B1 for each coord	
	circle is $(x - 12)^2 + (y + 14)^2 = 100$	B1	ft their C if at least one coord correct	

			mn. My	121
4751	Mark	Scheme	January 201	Mathscloud con
12 (i)	10	1		OHO, COD
12 (ii)	$[x =] 5$ or ft their (i) $\div 2$	1	not necessarily ft from (i) eg they may start again with calculus to get $x = 5$	
	ht = 5[m] cao	1		
12 (iii)	d = 7/2 o.e.	M1	or ft their (ii) -1.5 or their (i) $\div 2 - 1.5$ o.e.	
	$[y =] 1/5 \times 3.5 \times (10 - 3.5)$ o.e. or ft	M1	or $7 - 1/5 \times 3.5^2$ or ft	
	= 91/20 o.e. cao isw	A1	or showing $y - 4 = 11/20$ o.e. cao	
12 (iv)	$4.5 = 1/5 \times x(10 - x)$ o.e.	M1		
	22.5 = x(10 - x) o.e.	M1	eg $4.5 = x(2 - 0.2x)$ etc	
	$2x^2 - 20x + 45$ [= 0] o.e. eg $x^2 - 10x + 22.5$ [=0] or $(x - 5)^2 = 2.5$	A1	cao; accept versions with fractional coefficients of x^2 , isw	
	$[x=]$ $\frac{20 \pm \sqrt{40}}{4}$ or $5 \pm \frac{1}{2}\sqrt{10}$ o.e.	M1	or $x-5=[\pm]\sqrt{2.5}$ o.e.; ft their quadratic eqn provided at least M1 gained already; condone one error in formula or substitution; need not be simplified or be real	
	width = $\sqrt{10}$ o.e. eg $2\sqrt{2.5}$ cao	A1	accept simple equivalents only	

4752 (C2) Concepts for Advanced Mathematics

752 1 752		Schen Adv	January 2 anced Mathematics 1 for each term	20 Mall
	$\frac{1}{2}x^2 + 3x^{-1} + c$ o.e.	3	1 for each term	3
(i)	5 with valid method	1	eg sequence has period of 4 nos.	
(ii)	165 www	2	M1 for $13 \times (1 + 3 + 5 + 3) + 1 + 3 + 5$ or for $14 \times (1 + 3 + 5 + 3) - 3$	3
	rt angled triangle with $\sqrt{2}$ on one side	1	or M1 for $\cos^2 \theta = 1 - \sin^2 \theta$ used	
	and 3 on hyp Pythag. used to obtain remaining side = $\sqrt{7}$	1	A1 for $\cos \theta = \frac{\sqrt{7}}{\sqrt{9}}$	
	$\tan \theta = \frac{opp}{adj} = \frac{\sqrt{2}}{\sqrt{7}} \text{ o.e.}$	1	A1 for $\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\sqrt{2}}{\sqrt{7}}$ o.e.	3
	radius = 6.5 [cm]	3	M1 for $\frac{1}{2} \times r^2 \times 0.4$ [= 8.45] o.e. and M1 for $r^2 = \frac{169}{4}$ o.e. [= 42.25]	3
(i)	sketch of correct shape with P (-0.5,2) Q (0,4) and R (2,2)	2	1 if Q and one other are correct	
(ii)	sketch of correct shape with P (-1,0.5) Q (0,1) and R (4,0.5)	2	1 if Q and one other are correct	4
(i)	205	3	M1 for AP identified with $d = 4$ and	
(ii)	$\frac{25}{3}$ o.e.	2	M1 for $5 + 50 d$ used M1 for $r = \frac{2}{5}$ o.e.	5
(i)	$\frac{\sin A}{\sin A} = \frac{\sin 79}{\sin A}$ s.o.i.	M1	<i>J</i>	
	5.6 8.4 S.6.1. [A =] 40.87 to 41	A1		
(ii)	[BC ² =] $5.6^2 + 7.8^2 - 2 \times 5.6 \times 7.8 \times \cos (\text{``180-79''})$	M1 A1		
	= 108.8 to 108.9 [BC =] 10.4()	A1		5
+	$y' = 3x^{-\frac{1}{2}}$	M1	condone if unsimplified	
	$\frac{3}{4}$ when $x = 16$ y = 24 when $x = 16$	A1 B1		
	y – their 24 = their $\frac{3}{4}(x - 16)$ $y - 24 = \frac{3}{4}(x - 16)$ o.e.	M1 A1	dependent on $\frac{dy}{dx}$ used for m	5

				nn	Mr. M	
4752	2	Mark	k Sche	me January	2 779/4	Oth S
9	(i)		G1 DG1	for curve of correct shape in both quadrants must go through (0, 1) shown	780	Noud com
	(ii)	$2x + 1 = \frac{\log 10}{\log 13}$ o.e. $x = 10.55$	M1 A2	or M1 for $2x + 1 = \log_3 10$ A1 for other versions of 0.547or 0.548	5	
10	(i)	$[x =] 0.55$ $3x^{2} - 6x - 9$ use of their $y' = 0$ $x = -1$ $x = 3$ valid method for determining nature of turning point $\max \text{ at } x = -1 \text{ and } \min \text{ at } x = 3$ $x(x^{2} - 3x - 9)$ $\frac{3 \pm \sqrt{45}}{2} \text{ or } (x - \frac{3}{2})^{2} = 9 + \frac{9}{4}$	M1 M1 A1 A1 M1 A1	c.a.o.	6	
	(iii)	$2 4$ $0, \frac{3}{2} \pm \frac{\sqrt{45}}{2} o.e.$ sketch of cubic with two turning points correct way up	A1		3	
		x-intercepts – negative, 0, positive shown	DG1		2	
11	(i)	47.625 [m ²] to 3 sf or more, with correct method shown	4	M3 for $\frac{1.5}{2}$ × (2.3 + 2 + 2[2.7 + 3.3 + 4 + 4.8 + 5.2 + 5.2 + 4.4])	4	
	(ii)	43.05	2	M1 for 1.5 × (2.3+2.7+3.3+4+4.8+5.2+4.4+2)	2	
	(iii)	$-0.013x^4/4 + 0.16x^3/3 - 0.082x^2/2 + 2.4x$ o.e. their integral evaluated at $x = 12$ (and 0) only 47.6 to 47.7	M2 M1 A1	M1 for three terms correct dep on integration attempted	4	
	(iv)	5.30 found compared with 5.2 s.o.i.	1 D1		2	
12	(i)	$\log P = \log a + bt$ www comparison with $y = mx + c$ s.o.i. intercept = $\log_{10} a$	1 1 1	must be with correct equation dependent on correct equation	3	
	(ii)	[2.12, 2.21], 2.32, 2.44, 2.57, 2.69 plots ft ruled line of best fit	1 1 1	Between (10, 2.08) and (10, 2.12)	3	

4752 Mark Scheme

January 2 Pains Cloud Com

(iii)	$0.0100 \le m < 0.0125$	B2	M1 for $\frac{y - \text{step}}{x - \text{step}}$	
	$a = 10^{c}$ or $loga = c$	B1	$1.96 \leq c \leq 2.02$	
	$P = 10^{c} \times 10^{mt} \text{ or } 10^{mt+c}$	B1	f.t. their m and a	4
(iv)	use of $t = 105$ 1.0 – 2.0 billion approx	B1 B1		
	unreliable since extrapolation o.e.	E1		3

S S NAME OF THE STATE OF THE ST

4753 (C3) Methods for Advanced Mathematics

1 $e^{2x} - 5e^x = 0$ $\Rightarrow e^x (e^x - 5) = 0$ $\Rightarrow e^x = 5$ $\Rightarrow x = \ln 5 \text{ or } 1.6094$	M1 M1 A1 A1 [4]	factoring out e^x or dividing $e^{2x} = 5e^x$ by e^x $e^{2x} / e^x = e^x$ In 5 or 1.61 or better, mark final answer -1 for additional solutions, e.g. $x = 0$
or $\ln(e^{2x}) = \ln(5e^x)$ $\Rightarrow 2x = \ln 5 + x$ $\Rightarrow x = \ln 5 \text{ or } 1.6094$	M1 A1 A1 [4]	taking lns on $e^{2x} = 5e^x$ $2x$, $\ln 5 + x$ $\ln 5$ or 1.61 or better, mark final answer -1 for additional solutions, e.g. $x = 0$
2 (i) When $t = 0$, $T = 100$ $\Rightarrow 100 = 20 + b$ $\Rightarrow b = 80$ When $t = 5$, $T = 60$ $\Rightarrow 60 = 20 + 80 e^{-5k}$ $\Rightarrow e^{-5k} = \frac{1}{2}$ $\Rightarrow k = \ln 2 / 5 = 0.139$	M1 A1 A1 [4]	substituting $t = 0$, $T = 100$ cao substituting $t = 5$, $T = 60$ $1/5 \ln 2$ or 0.14 or better
(ii) $50 = 20 + 80 e^{-kt}$ $\Rightarrow e^{-kt} = 3/8$ $\Rightarrow t = \ln(8/3) / k = 7.0$	75 mins A1 [2]	Re-arranging and taking lns correctly – ft their b and k answers in range 7 to 7.1
3(i) $\frac{dy}{dx} = \frac{1}{3}(1+3x^2)$ $= 2x(1+3x^2)^{-1}$		chain rule $1/3 u^{-2/3} \text{ or } \frac{1}{3} (1+3x^2)^{-2/3}$ o.e but must be '2' (not 6/3) mark final answer
(ii) $3y^2 \frac{dy}{dx} = 6x$ $\Rightarrow dy/dx = 6x/3y^2$ $= \frac{2x}{(1+3x^2)^{2/3}}$	$ = 2x(1+3x^2)^{-2/3} $ $ = 1 $ E1 [4]	$3y^{2} \frac{dy}{dx}$ = 6x if deriving $2x(1+3x^{2})^{-2/3}$, needs a step of working

1753	Mark Schen	ne January 2010	M. My Maths Cloud Con
4(i) $\int_0^1 \frac{2x}{x^2 + 1} dx = \left[\ln(x^2 + 1) \right]_0^1$ = \ln 2	M2 A1 [3]	$[\ln(x^2+1)]$ cao (must be exact)	COM
or let $u = x^2 + 1$, $du = 2x dx$ $\Rightarrow \int_0^1 \frac{2x}{x^2 + 1} dx = \int_1^2 \frac{1}{u} du$ $= [\ln u]_1^2$ $= \ln 2$	M1 A1 A1 [3]	$\int \frac{1}{u} du$ or $\left[\ln(1+x^2) \right]_0^1$ with correct limits cao (must be exact)	
(ii) $\int_0^1 \frac{2x}{x+1} dx = \int_0^1 \frac{2x+2-2}{x+1} dx = \int_0^1 (2-\frac{2}{x+1}) dx$ $= \left[2x - 2\ln(x+1) \right]_0^1$ $= 2 - 2\ln 2$	x M1 A1, A1 A1 A1 [5]	dividing by $(x + 1)$ 2, $-2/(x+1)$	
or $\int_0^1 \frac{2x}{x+1} dx$ let $u = x + 1$, $\Rightarrow du = dx$ $= \int_1^2 \frac{2(u-1)}{u} du$ $= \int_1^2 (2 - \frac{2}{u}) du$ $= [2u - 2\ln u]_1^2$ $= 4 - 2\ln 2 - (2 - 2\ln 1)$ $= 2 - 2\ln 2$	M1 B1 M1 A1 A1 [5]	substituting $u = x + 1$ and $du = dx$ (or $du/dx = 1$) and correct limits used for u or x $2(u - 1)/u$ dividing through by u $2u - 2\ln u$ allow ft on $(u - 1)/u$ (i.e. with 2 omitted) o.e. cao (must be exact)	
5 (i) $a = 0, b = 3, c = 2$	B(2,1,0)	or $a = 0, b = -3, c = -2$	
(ii) $a = 1, b = -1, c = 1$ or $a = 1, b = 1, c = -1$	B(2,1,0) [4]		
6 $f(-x) = -f(x), g(-x) = g(x)$ g f(-x) = g [-f (x)] = g f (x) \Rightarrow $g f \text{ is even}$	B1B1 M1 E1 [4]	condone f and g interchanged forming $gf(-x)$ or $gf(x)$ and using f(-x) = -f(x) www	
7 Let $\arcsin x = \theta$ $\Rightarrow x = \sin \theta$ $\theta = \arccos y \Rightarrow y = \cos \theta$ $\sin^2 \theta + \cos^2 \theta = 1$ $\Rightarrow x^2 + y^2 = 1$	M1 M1 E1 [3]		

 $=\frac{\pi}{18}-\frac{1}{9}$

4753	Mark Scheme	January 2010 January 2010 January 2010
8(i) At P, $x \cos 3x = 0$ $\Rightarrow \cos 3x = 0$ $\Rightarrow 3x = \pi/2, 3\pi/2$ $\Rightarrow x = \pi/6, \pi/2$ So P is $(\pi/6, 0)$ and Q is $(\pi/2, 0)$	M1 or verificati M1 $3x = \pi/2$, (37 dep both Ms [4]	ion
(ii) $\frac{dy}{dx} = -3x \sin 3x + \cos 3x$ At P, $\frac{dy}{dx} = -\frac{\pi}{2} \sin \frac{\pi}{2} + \cos \frac{\pi}{2} = -\frac{\pi}{2}$ At TPs $\frac{dy}{dx} = -3x \sin 3x + \cos 3x = 0$ $\Rightarrow \cos 3x = 3x \sin 3x$ $\Rightarrow 1 = 3x \sin 3x / \cos 3x = 3x \tan 3x$ $\Rightarrow x \tan 3x = 1/3$	$ \frac{\pi}{2} $ M1 A1cao M1 $ \frac{\pi}{A1cao} $ M1 $ \frac{\pi}{dy/dx} = 0 \text{ and } 0 $	$f(x) = -3 \sin 3x$ $\frac{dy}{dx} = -3x \sin 3x \text{ allow B1}$
(iii) $A = \int_0^{\pi/6} x \cos 3x dx$ Parts with $u = x$, $dv/dx = \cos 3x$ $du/dx = 1$, $v = 1/3 \sin 3x$ $\Rightarrow A = \left[\frac{1}{3}x \sin 3x\right]_0^{\frac{\pi}{6}} - \int_0^{\pi/6} \frac{1}{3} \sin 3x dx$	M1 but must be	
$= \left[\frac{1}{3}x\sin 3x + \frac{1}{9}\cos 3x\right]_{0}^{\frac{\pi}{6}}$	A1 dep previous substituting	s A1. correct limits, dep 1 st M1: ft ided in radians

A1 cao

[6]

o.e. but must be exact

mm.	7,	4	
nnn.	Ymall	Asch.	S
		-94	X.COM

9(i) ⇒	$f'(x) = \frac{(x^2 + 1)4x - (2x^2 - 1)2x}{(x^2 + 1)^2}$ $= \frac{4x^3 + 4x - 4x^3 + 2x}{(x^2 + 1)^2} = \frac{6x}{(x^2 + 1)^2} *$ When $x > 0$, $6x > 0$ and $(x^2 + 1)^2 > 0$ $f'(x) > 0$	M1 A1 E1 M1 E1	Quotient or product rule correct expression www attempt to show or solve $f'(x) > 0$ numerator > 0 and denominator > 0 or, if solving, $6x > 0 \Rightarrow x > 0$
(ii)	$f(2) = \frac{8-1}{4+1} = 1\frac{2}{5}$ Range is $-1 \le y \le 1\frac{2}{5}$	B1 B1 [2]	must be \leq , y or $f(x)$
\Rightarrow \Rightarrow	f'(x) max when f''(x) = 0 6 - 18 x ² = 0 x ² = 1/3, x = 1/\sqrt{3} f'(x) = $\frac{6/\sqrt{3}}{(1\frac{1}{3})^2} = \frac{6}{\sqrt{3}} \cdot \frac{9}{16} = \frac{9\sqrt{3}}{8} = 1.95$	M1 A1 M1 A1 [4]	$(\pm)1/\sqrt{3}$ oe (0.577 or better) substituting $1/\sqrt{3}$ into $f'(x)$ $9\sqrt{3}/8$ o.e. or 1.95 or better (1.948557)
(iv)	Domain is $-1 < x < 1\frac{2}{5}$ Range is $0 \le y \le 2$	B1 B1 M1 A1 cao	ft their 1.4 but not $x \ge -1$ or $0 \le g(x) \le 2$ (not f) Reasonable reflection in $y = x$ from $(-1, 0)$ to $(1.4, 2)$, through $(0, \sqrt{2}/2)$ allow omission of one of -1 , 1.4, 2, $\sqrt{2}/2$
	$y = \frac{2x^2 - 1}{x^2 + 1} x \leftrightarrow y$ $x = \frac{2y^2 - 1}{y^2 + 1}$ $xy^2 + x = 2y^2 - 1$ $x + 1 = 2y^2 - xy^2 = y^2(2 - x)$ $y^2 = \frac{x + 1}{2 - x}$ $y = \sqrt{\frac{x + 1}{2 - x}} *$	M1 M1 M1	(could start from g) Attempt to invert clearing fractions collecting terms in y^2 and factorising www

4754 (C4) Applications of Advanced Mathematics

1		$\frac{1+2x}{(1-2x)^2} = (1+2x)(1-2x)^{-2}$ $= (1+2x)[1+(-2)(-2x)+\frac{(-2)(-3)}{1.2}(-2x)^2 + \dots]$ $= (1+2x)[1+4x+12x^2+\dots]$ $= 1+4x+12x^2+2x+8x^2+\dots$ $= 1+6x+20x^2+\dots$ Valid for $-1 < -2x < 1$ $\Rightarrow -\frac{1}{2} < x < \frac{1}{2}$	M1 A1 A1 A1 A1 A1 [7]	binomial expansion power -2 unsimplified,correct sufficient terms
2		$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$ $\Rightarrow \cot 2\theta = \frac{1}{\tan 2\theta} = \frac{1 - \tan^2 \theta}{2 \tan \theta} *$ $\cot 2\theta = 1 + \tan \theta$ $\Rightarrow \frac{1 - \tan^2 \theta}{2 \tan \theta} = 1 + \tan \theta$ $\Rightarrow 1 - \tan^2 \theta = 2 \tan \theta + 2 \tan^2 \theta$ $\Rightarrow 3 \tan^2 \theta + 2 \tan \theta - 1 = 0$ $\Rightarrow (3 \tan \theta - 1)(\tan \theta + 1) = 0$ $\Rightarrow \tan \theta = 1/3, \ \theta = 18.43^\circ, \ 198.43^\circ $ or $\tan \theta = -1, \ \theta = 135^\circ, \ 315^\circ$	M1 E1 M1 M1 A3,2,1, 0 [7]	oe eg converting either side into a one line fraction(s) involving $\sin \theta$ and $\cos \theta$. quadratic = 0 factorising or solving 18.43°, 198.43°, 135°, 315° –1 extra solutions in the range
3	(i)	$\frac{dy}{dt} = \frac{(1+t)\cdot 2 - 2t \cdot 1}{(1+t)^2} = \frac{2}{(1+t)^2}$ $\frac{dx}{dt} = 2e^{2t}$ $\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$ $\Rightarrow \frac{dy}{dx} = \frac{\frac{2}{(1+t)^2}}{2e^{2t}} = \frac{1}{e^{2t}(1+t)^2}$ $t = 0 \Rightarrow dy/dx = 1$	M1A1 B1 M1 A1 B1ft [6]	

		Г	1	
	(ii)	$\Rightarrow y = \frac{\ln x}{1 + \frac{1}{2} \ln x} = \frac{2 \ln x}{2 + \ln x}$	M1 A1 [2]	or t in terms of y
4	(i)	$\overrightarrow{AB} = \begin{pmatrix} -2 \\ -1 \\ -1 \end{pmatrix}, \overrightarrow{AC} = \begin{pmatrix} -1 \\ -11 \\ 3 \end{pmatrix}$	B1 B1	
	(ii)	$\mathbf{n}.\overline{AB} = \begin{pmatrix} 2 \\ -1 \\ -3 \end{pmatrix}. \begin{pmatrix} -2 \\ -1 \\ -1 \end{pmatrix} = -4 + 1 + 3 = 0$ $\mathbf{n}.\overline{AC} = \begin{pmatrix} 2 \\ -1 \\ -1 \\ -3 \end{pmatrix}. \begin{pmatrix} -1 \\ -11 \\ 3 \end{pmatrix} = -2 + 11 - 9 = 0$ $\Rightarrow \text{ plane is } 2x - y - 3z = d$ $x = 1, y = 3, z = -2 \Rightarrow d = 2 - 3 + 6 = 5$ $\Rightarrow \text{ plane is } 2x - y - 3z = 5$	M1 E1 E1 M1 A1 [5]	scalar product
5	(i)	$x = -5 + 3\lambda = 1 \Rightarrow \lambda = 2$ $y = 3 + 2 \times 0 = 3$ z = 4 - 2 = 2, so $(1, 3, 2)$ lies on 1st line. $x = -1 + 2\mu = 1 \Rightarrow \mu = 1$ y = 4 - 1 = 3 $z = 2 + 0 = 2$, so $(1, 3, 2)$ lies on 2^{nd} line.	M1 E1 E1 [3]	finding λ or μ verifying two other coordinates for line 1 verifying two other coordinates for line 2
	(ii)	Angle between $\begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$ $\cos \theta = \frac{3 \times 2 + 0 \times (-1) + (-1) \times 0}{\sqrt{10} \sqrt{5}}$ $= 0.8485$ $\Rightarrow \theta = 31.9^{\circ}$	M1 M1 A1	allow M1 for any vectors or 0.558 radians
		$\Rightarrow \theta = 31.9^{\circ}$	A1 [4]	or 0.558 radians

6	(i)	$BAC = 120 - 90 - (90 - \theta)$ $= \theta - 60$ $\Rightarrow BC = b \sin(\theta - 60)$ $CD = AE = a \sin \theta$ $\Rightarrow h = BC + CD = a \sin \theta + b \sin(\theta - 60^\circ) *$	B1 M1 E1 [3]	
	(ii)	$h = a \sin \theta + b \sin (\theta - 60^{\circ})$ $= a \sin \theta + b (\sin \theta \cos 60 - \cos \theta \sin 60)$ $= a \sin \theta + \frac{1}{2} b \sin \theta - \frac{\sqrt{3}}{2} b \cos \theta$ $= (a + \frac{1}{2}b)\sin \theta - \frac{\sqrt{3}}{2}b\cos \theta *$	M1 M1 E1 [3]	corr compound angle formula $\sin 60 = \sqrt{3/2}$, $\cos 60 = \frac{1}{2}$ used
	(iii)	OB horizontal when $h = 0$ $\Rightarrow (a + \frac{1}{2}b)\sin\theta - \frac{\sqrt{3}}{2}b\cos\theta = 0$ $\Rightarrow (a + \frac{1}{2}b)\sin\theta = \frac{\sqrt{3}}{2}b\cos\theta$ $\Rightarrow \frac{\sin\theta}{\cos\theta} = \frac{\frac{\sqrt{3}}{2}b}{a + \frac{1}{2}b}$ $\Rightarrow \tan\theta = \frac{\sqrt{3}b}{2a + b} *$	M1 M1 E1 [3]	$\frac{\sin\theta}{\cos\theta} = \tan\theta$
	(iv)	$2\sin\theta - \sqrt{3}\cos\theta = R\sin(\theta - \alpha)$ $= R(\sin\theta\cos\alpha - \cos\theta\sin\alpha)$ $\Rightarrow R\cos\alpha = 2, R\sin\alpha = \sqrt{3}$ $\Rightarrow R^2 = 2^2 + (\sqrt{3})^2 = 7, R = \sqrt{7} = 2.646 \text{ m}$ $\tan\alpha = \sqrt{3}/2, \alpha = 40.9^\circ$ $So h = \sqrt{7}\sin(\theta - 40.9^\circ)$ $\Rightarrow h_{\text{max}} = \sqrt{7} = 2.646 \text{ m}$ $\text{when } \theta - 40.9^\circ = 90^\circ$ $\Rightarrow \theta = 130.9^\circ$	M1 B1 M1A1 B1ft M1 A1 [7]	

7	(i)	$\frac{dx}{dt} = -1(1 + e^{-t})^{-2} \cdot - e^{-t}$ $= \frac{e^{-t}}{(1 + e^{-t})^2}$ $1 - x = 1 - \frac{1}{1 + e^{-t}}$ $1 - x = \frac{1 + e^{-t} - 1}{1 + e^{-t}} = \frac{e^{-t}}{1 + e^{-t}}$ $\Rightarrow x(1 - x) = \frac{1}{1 + e^{-t}} \frac{e^{-t}}{1 + e^{-t}} = \frac{e^{-t}}{(1 + e^{-t})^2}$ $\Rightarrow \frac{dx}{dt} = x(1 - x)$ When $t = 0$, $x = \frac{1}{1 + e^0} = 0.5$	M1 A1 M1 A1 E1 B1 [6]	chain rule substituting for $x(1-x)$ $1-x = \frac{1+e^{-t}-1}{1+e^{-t}} = \frac{e^{-t}}{1+e^{-t}}$ [OR,M1 A1 for solving differential equation for t , B1 use of initial condition, M1 A1 making x the subject, E1 required form]
	(ii)	$\frac{1}{(1+e^{-t})} = \frac{3}{4}$ $\Rightarrow e^{-t} = 1/3$ $\Rightarrow t = -\ln 1/3 = 1.10 \text{ years}$	M1 M1 A1 [3]	correct log rules
	(iii)	$\frac{1}{x^2(1-x)} = \frac{A}{x^2} + \frac{B}{x} + \frac{C}{1-x}$ $\Rightarrow 1 = A(1-x) + Bx(1-x) + Cx^2$ $x = 0 \Rightarrow A = 1$ $x = 1 \Rightarrow C = 1$ $\text{coefft of } x^2 : 0 = -B + C \Rightarrow B = 1$	M1 M1 B(2,1,0) [4]	clearing fractions substituting or equating coeffs for A,B or C A = 1, B = 1, C = 1 www
	(iv)	$\int \frac{dx}{x^{2}(1-x)} dx = \int dt$ $\Rightarrow t = \int (\frac{1}{x^{2}} + \frac{1}{x} + \frac{1}{1-x}) dx$ $= -1/x + \ln x - \ln(1-x) + c$ When $t = 0, x = \frac{1}{2} \Rightarrow 0 = -2 + \ln \frac{1}{2} - \ln \frac{1}{2} + c$ $\Rightarrow c = 2.$ $\Rightarrow t = -1/x + \ln x - \ln(1-x) + 2$ $= 2 + \ln \frac{x}{1-x} - \frac{1}{x} *$	M1 B1 B1 M1 E1	separating variables $-1/x +$ $\ln x - \ln(1-x) \text{ ft their A,B,C}$ substituting initial conditions
	(v)	$t = 2 + \ln \frac{3/4}{1 - 3/4} - \frac{1}{3/4} = \ln 3 + \frac{2}{3} = 1.77 \text{ yrs}$	M1A1 [2]	

1	15	B1	
2	THE MATHEMATICIAN	B1	
3	M H X I Q 3 or 4 correct – award 1 mark	B2	
4	Two from Ciphertext N has high frequency E would then correspond to ciphertext R which also has high frequency T would then correspond to ciphertext G which also has high frequency A is preceded by a string of six letters displaying low frequency	B1 B1	oe oe
5	The length of the keyword is a factor of both 84 and 40. The only common factors of 84 and 40 are 1,2 and 4 (and a keyword of length 1 can be dismissed in this context)	M1 E1	
6	Longer strings to analyse so letter frequency more transparent. Or there are fewer 2-letter keywords to check	B2	
7	OQH DRR EBG One or two accurate – award 1 mark	B2	
8 (i) (ii)	Evidence of intermediate H FACE Evidence of intermediate HCEG – award 2 marks Evidence of accurate application of one of the two decoding ciphers - award 1 mark $800 = (3 \times 266) + 2$; the second row gives T	B1 B3	Use of
(111)	$800 = (3 \times 200) + 2$; the second row gives 1 so plaintext is R	A1	second row

4755 (FP1) Further Concepts for Advanced Mathematics

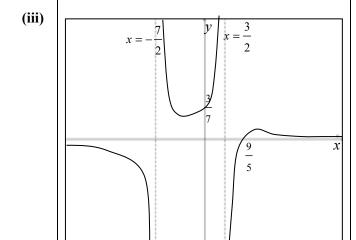
1	$\alpha\beta = (-3+j)(5-2j) = -13+11j$	M1 A1 [2]	Use of $j^2 = -1$
	$\frac{\alpha}{\beta} = \frac{-3+j}{5-2j} = \frac{(-3+j)(5+2j)}{29} = \frac{-17}{29} - \frac{1}{29}j$	M1 A1 A1 [3]	Use of conjugate 29 in denominator All correct
2 (i)	AB is impossible	B1	
	$\mathbf{CA} = (50)$	B1	
	$\mathbf{B} + \mathbf{D} = \begin{pmatrix} 3 & 1 \\ 6 & -2 \end{pmatrix}$	В1	
	$\mathbf{AC} = \begin{pmatrix} 20 & 4 & 32 \\ -10 & -2 & -16 \\ 20 & 4 & 32 \end{pmatrix}$	B2	-1 each error
(ii)	$\mathbf{DB} = \begin{pmatrix} -2 & 0 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} 5 & 1 \\ 2 & -3 \end{pmatrix} = \begin{pmatrix} -10 & -2 \\ 22 & 1 \end{pmatrix}$	M1 A1 [2]	Attempt to multiply in correct order c.a.o.
3	$\alpha + \beta + \gamma = a - d + a + a + d = \frac{12}{4} \Rightarrow a = 1$	M1 A1	Valid attempt to use sum of roots $a = 1$, c.a.o.
	$(a-d)a(a+d) = \frac{3}{4} \Rightarrow d = \pm \frac{1}{2}$	M1	Valid attempt to use product of roots
	So the roots are $\frac{1}{2}$, 1 and $\frac{3}{2}$	A1	All three roots
	$\alpha\beta + \alpha\gamma + \beta\gamma = \frac{k}{4} = \frac{11}{4} \Rightarrow k = 11$	M1	Valid attempt to use $\alpha\beta + \alpha\gamma + \beta\gamma$, or to multiply out factors, or to substitute a root
		A1 [6]	k = 11 c.a.o.

4755	Mark Scheme		Attempt to consider MM ⁻¹ or M ⁻¹ M (may be implied)
4	$\mathbf{M}\mathbf{M}^{-1} = \frac{1}{k} \begin{pmatrix} 4 & 0 & 1 \\ -6 & 1 & 1 \\ 5 & 2 & 5 \end{pmatrix} \begin{pmatrix} -3 & -2 & 1 \\ -35 & -15 & 10 \\ 17 & 8 & -4 \end{pmatrix}$	M1	Attempt to consider MM ⁻¹ or M ⁻¹ M (may be implied)
	$= \frac{1}{k} \begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{pmatrix} \Rightarrow k = 5$	A1 [2]	c.a.o.
	$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{5} \begin{pmatrix} -3 & -2 & 1 \\ -35 & -15 & 10 \\ 17 & 8 & -4 \end{pmatrix} \begin{pmatrix} 9 \\ 32 \\ 81 \end{pmatrix} $	M1	Attempt to pre-multiply by M ⁻¹
	$\begin{pmatrix} -3 & -2 & 1 \end{pmatrix} \begin{pmatrix} 9 \end{pmatrix} \begin{pmatrix} -10 \end{pmatrix}$	M1 A1	Attempt to multiply matrices Correct
	$\begin{vmatrix} \frac{1}{5} \begin{pmatrix} -3 & -2 & 1\\ -35 & -15 & 10\\ 17 & 8 & -4 \end{pmatrix} \begin{pmatrix} 9\\ 32\\ 81 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} -10\\ 15\\ 85 \end{pmatrix}$ $\Rightarrow x = -2, \ y = 3, \ z = 17$	A1 [4]	All 3 correct s.c. B1 if matrices not used
5	$\sum_{r=1}^{n} (r+2)(r-3) = \sum_{r=1}^{n} (r^{2} - r - 6)$	[4]	S.C. DI II matrices not asea
	$= \sum_{r=1}^{n} r^2 - \sum_{r=1}^{n} r - 6n$	M1	Separate into 3 sums
	$= \frac{1}{6}n(n+1)(2n+1) - \frac{1}{2}n(n+1) - 6n$	A2	-1 each error
	$= \frac{1}{6}n[(n+1)(2n+1)-3(n+1)-36]$	M1	Valid attempt to factorise (with <i>n</i> as a factor)
	$= \frac{1}{6}n(2n^2 - 38) = \frac{1}{3}n(n^2 - 19)$	A1 A1 [6]	Correct expression c.a.o. Complete, convincing argument
6	When $n = 1$, $\frac{n(n+1)(n+2)}{3} = 2$,	B1	
	so true for $n = 1$ Assume true for $n = k$	E1	Assume true for <i>k</i>
	$2+6++k(k+1) = \frac{k(k+1)(k+2)}{3}$ $\Rightarrow 2+6++(k+1)(k+2)$	M1	Add (1 + 1) (1 torms to both sides
	$= \frac{k(k+1)(k+2)}{3} + (k+1)(k+2)$	M1	Add $(k+1)$ th term to both sides
	$= \frac{1}{3}(k+1)(k+2)(k+3)$	A1	c.a.o. with correct simplification
	$=\frac{(k+1)((k+1)+1)((k+1)+2)}{3}$		
	But this is the given result with $k + 1$ replacing k . Therefore if it is true for $n = k$ it is true for $n = k + 1$.	E1	Dependent on A1 and previous E1
	Since it is true for $n = 1$, it is true for $n = 1, 2, 3$ and so true for all positive integers.	E1 [6]	Dependent on B1 and previous E1

7	(i)	$x = \frac{-7}{2}, x = \frac{3}{2}, y = 0$

B1 B1 B1

[3]


(ii) Large positive $x, y \rightarrow 0^+$ (e.g. consider x = 100)

Large negative $x, y \rightarrow 0^-$

(e.g. consider x = -100)

B1 B1 Evidence of method M1

[3]

- B1 Intercepts correct and labelled
- B1 LH and central branches correct
- B1 RH branch correct, with clear maximum

[3]

(iv)

 $x < -\frac{7}{2}$ or $\frac{3}{2} < x \le \frac{9}{5}$

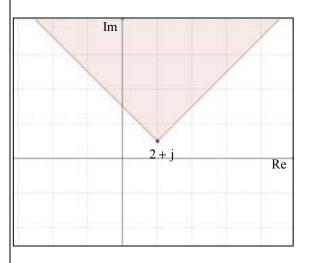
B1

B2

Award B1 if only error relates to inclusive/exclusive inequalities

[3]

(b)(i)


(ii)

Januar	y Zi Air
	00/0
	July .
$_{7}) = 4$.60

8(a) (i)	$\left z - (2 + 6j) \right = 4$
----------	-----------------------------------

(ii)
$$|z-(2+6j)| < 4$$
 and $|z-(3+7j)| > 1$

$$|z - (2+6j)| < 4$$
 and $|z - (3+7j)| > 1$

$$\arg(41+46j) = \arctan\left(\frac{46}{41}\right) = 0.843$$

$$\frac{\pi}{4} < 0.843 < \frac{3\pi}{4}$$
so 43 + 47j does fall within the region

43 + 47j - (2 + j) = 41 + 46j

B1	2 + 6j seen
B1	(expression in z) = 4
B1	Correct equation
[3]	

B1
$$|z - (2+6j)| < 4$$

B1 $|z - (3+7j)| > 1$

[3]

(allow errors in inequality signs) Both inequalities correct В1

Attempt to calculate argument, or M1 other valid method such as comparison with y = x - 1

Correct **A**1

Justified E1 [3]

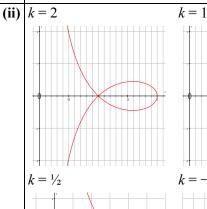
9	(i)	$\frac{2}{r} - \frac{3}{r+1} + \frac{1}{r+2}$ $= \frac{2(r+1)(r+2) - 3r(r+2) + r(r+1)}{r(r+1)(r+2)}$	M1	Attempt a common denominator
		$= \frac{r(r+1)(r+2)}{r(r+1)(r+2)} = \frac{4+r}{r(r+1)(r+2)} = \frac{4+r}{r(r+1)(r+2)}$	A1 [2]	Convincingly shown
	(ii)	$\sum_{r=1}^{n} \frac{4+r}{r(r+1)(r+2)} = \sum_{r=1}^{n} \left[\frac{2}{r} - \frac{3}{r+1} + \frac{1}{r+2} \right]$	M1	Use of the given result (may be implied)
		$= \left(\frac{2}{1} - \frac{3}{2} + \frac{1}{3}\right) + \left(\frac{2}{2} - \frac{3}{3} + \frac{1}{4}\right) + \left(\frac{2}{3} - \frac{3}{4} + \frac{1}{5}\right) + \dots$	M1	Terms in full (at least first and one other)
		$+\left(\frac{2}{n-1}-\frac{3}{n}+\frac{1}{n+1}\right)+\left(\frac{2}{n}-\frac{3}{n+1}+\frac{1}{n+2}\right)$	A2	At least 3 consecutive terms correct, -1 each error
		$= \frac{2}{1} - \frac{3}{2} + \frac{2}{2} + \frac{1}{n+1} - \frac{3}{n+1} + \frac{1}{n+2}$	M1	Attempt to cancel, including algebraic terms
		$= \frac{3}{2} - \frac{2}{n+1} + \frac{1}{n+2}$ as required	A1 [6]	Convincingly shown
	(iii)	$\frac{3}{2}$	B1 [1]	
		_	[1]	
	(iv)	$\sum_{r=50}^{100} \frac{4+r}{r(r+1)(r+2)}$		
		$= \sum_{r=1}^{100} \frac{4+r}{r(r+1)(r+2)} - \sum_{r=1}^{49} \frac{4+r}{r(r+1)(r+2)}$	M1	Splitting into two parts
		$= \left(\frac{3}{2} - \frac{2}{101} + \frac{1}{102}\right) - \left(\frac{3}{2} - \frac{2}{50} + \frac{1}{51}\right)$	M1	Use of result from (ii)
		= 0.0104 (3s.f.)	A1 [3]	c.a.o.

4756 (FP2) Further Methods for Advanced Mathematics

1 (a)	$y = \arctan \sqrt{x}$		
1 (a)	$y = \arctan \sqrt{x}$ $u = \sqrt{x}, y = \arctan u$		
	$\Rightarrow \frac{du}{dx} = \frac{1}{2\sqrt{x}}, \frac{dy}{du} = \frac{1}{1+u^2}$		
	- .	M1	Using Chain Rule
	$\Rightarrow \frac{dy}{dx} = \frac{1}{1+u^2} \times \frac{1}{2\sqrt{x}}$	A1	Correct derivative in any form
	1 1 1		, and the second
	$= \frac{1}{1+x} \times \frac{1}{2\sqrt{x}} = \frac{1}{2\sqrt{x}(x+1)}$	A1	Correct derivative in terms of x
	OR $\tan y = \sqrt{x}$		
	$\Rightarrow \sec^2 y \frac{dy}{dx} = \frac{1}{2\sqrt{x}}$ M1A1		Rearranging for \sqrt{x} or x and
	▼ **		differentiating implicitly
	$\sec^2 y = 1 + \tan^2 y = 1 + x$		
	$\Rightarrow \frac{dy}{dx} = \frac{1}{2\sqrt{x}(x+1)}$ A1		
		M1	Integral in form k arctan \sqrt{x}
	$\Rightarrow \int_{0}^{1} \frac{1}{\sqrt{x}(x+1)} dx = \left[2 \arctan \sqrt{x} \right]_{0}^{1}$	A1	k=2
	$= 2 \arctan 1 - 2 \arctan 0$	Ai	h – 2
		A 1 (o.c.)	
	$=2\times\frac{\pi}{4}=\frac{\pi}{2}$	A1 (ag)	
(b)(i)	$x = r \cos \theta, y = r \sin \theta, x^2 + y^2 = r^2$	M1	Using at least one of these
(~)(1)	$x^2 + y^2 = xy + 1$		
	$\Rightarrow r^2 = r^2 \cos \theta \sin \theta + 1$	A1	LHS
		A1	RHS
	$\Rightarrow r^2 = \frac{1}{2}r^2 \sin 2\theta + 1$ \Rightarrow 2r^2 = r^2 \sin 2\theta + 2		
	$\Rightarrow r^2(2-\sin 2\theta)=2$		Clearly obtained
	$\Rightarrow r^2 = \frac{2}{2 - \sin 2\theta}$	A1 (ag)	$SR: x = r \sin \theta, y = r \cos \theta \text{ used}$
	$2-\sin 2\theta$		M1A1A0A0 max.
		4	
(ii)	$\operatorname{Max} r \operatorname{is} \sqrt{2}$	B1	
	Occurs when $\sin 2\theta = 1$	M1	Attempting to solve
	$\Rightarrow \theta = \frac{\pi}{4}, \frac{5\pi}{4}$	A1	Both. Accept degrees.
	4 4		A0 if extras in range
	$Min r = \sqrt{\frac{2}{3}}$	B1	$\left \frac{\sqrt{6}}{3} \right $
	Occurs when $\sin 2\theta = -1$	M1	Attempting to solve (must be -1)
	$\Rightarrow \theta = \frac{3\pi}{4}, \frac{7\pi}{4}$	A1	Both. Accept degrees.
	$\rightarrow 0^{-1}\frac{4}{4}, \frac{4}{4}$		A0 if extras in range
		6	

4756 Mark Scheme January 26 Harting Cloud Conn

(iii)	ľ		
	0.5		
	ds ds		
	-0.5	G1	Closed curve, roughly elliptical, with
		G1	no points or dents Major axis along $y = x$
		2	
2 (a)		M1	Using de Moivre
	$ = \cos^{5}\theta + 5\cos^{4}\theta \text{ j } \sin\theta + 10\cos^{3}\theta \text{ j}^{2}\sin^{2}\theta + 10\cos^{2}\theta \text{ j}^{3}\sin^{3}\theta + 5\cos\theta \text{ j}^{4}\sin^{4}\theta + \text{j}^{5}\sin^{5}\theta $	M1	Using binomial theorem appropriately
	$= \cos^5\theta - 10\cos^3\theta \sin^2\theta + 5\cos\theta \sin^4\theta + j()$	A1	Correct real part. Must evaluate powers of <i>j</i>
	$\cos 5\theta = \cos^5\theta - 10\cos^3\theta \sin^2\theta + 5\cos\theta \sin^4\theta$	M1	Equating real parts
	$= \cos^{5}\theta - 10\cos^{3}\theta(1-\cos^{2}\theta) + 5\cos\theta(1-\cos^{2}\theta)^{2}$ = $16\cos^{5}\theta - 20\cos^{3}\theta + 5\cos\theta$	M1 A1	Replacing $\sin^2\theta$ by $1 - \cos^2\theta$ a = 16, b = -20, c = 5
		6	
(b)	C + jS	M1	Forming series $C + jS$ as exponentials
	$=e^{j\theta}+e^{j\left(\theta+\frac{2\pi}{n}\right)}++e^{j\left(\theta+\frac{(2n-2)\pi}{n}\right)}$	A1	Need not see whole series
	This is a G.P.	M1	Attempting to sum finite or infinite G.P.
	$a=e^{\mathrm{j}\theta}$, $r=e^{\mathrm{j}\frac{2\pi}{n}}$	A1	Correct <i>a</i> , <i>r</i> used or stated, and <i>n</i> terms Must see <i>j</i>
	Sum = $\frac{e^{j\theta} \left(1 - \left(e^{j\frac{2\pi}{n}} \right)^n \right)}{1 - e^{j\frac{2\pi}{n}}}$	A1	
	$1 - e^{j\frac{2\pi}{n}}$ Numerator = $e^{j\theta} (1 - e^{2\pi j})$ and $e^{2\pi j} = 1$		
	so sum = 0	E1	Convincing explanation that sum = 0
	$\Rightarrow C = 0 \text{ and } S = 0$	E1	C = S = 0. Dep. on previous E1 Both E marks dep. on 5 marks above
(c)	$e^t \approx 1 + t + \frac{1}{2}t^2$	B1	Ignore terms in higher powers
	$\frac{t}{e^t - 1} \approx \frac{t}{t + \frac{1}{2}t^2}$	M1	Substituting Maclaurin series
		A1	
	$\frac{t}{t + \frac{1}{2}t^2} = \frac{1}{1 + \frac{1}{2}t} = \left(1 + \frac{1}{2}t\right)^{-1} = 1 - \frac{1}{2}t + \dots$	M1	Suitable manipulation and use of binomial theorem
	OR $\frac{1}{1+\frac{1}{2}t} = \frac{1}{1+\frac{1}{2}t} \times \frac{1-\frac{1}{2}t}{1-\frac{1}{2}t} = \frac{1-\frac{1}{2}t}{1-\frac{1}{4}t^2}$ M1		
	Hence $\frac{t}{e^t - 1} \approx 1 - \frac{1}{2}t$	A1 (ag)	
	OR $(e^t - 1)(1 - \frac{1}{2}t) = (t + \frac{1}{2}t^2 +)(1 - \frac{1}{2}t)$ M1		Substituting Maclaurin series
	A1		Correct expression
			Multiplying out
	$\Rightarrow \frac{t}{e^t - 1} \approx 1 - \frac{1}{2}t $ A1		Convincing explanation


4/56	Mark Schen	ie	January 20
3 (i)		M1	Evaluating determinant
3 (1)	(2 -2-2a 2+a)	A1	4-a
	$\mathbf{M}^{-1} = \frac{1}{4-a} \begin{pmatrix} 2 & -2-2a & 2+a \\ 2 & 2-3a & 2a-2 \\ -1 & 5 & -3 \end{pmatrix}$	M1	Finding at least four cofactors
	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	A1	Six signed cofactors correct
	$\begin{pmatrix} -1 & 5 & -3 \end{pmatrix}$	M1	Transposing and dividing by det
	When $a = -1$, $\mathbf{M}^{-1} = \frac{1}{5} \begin{pmatrix} 2 & 0 & 1 \\ 2 & 5 & -4 \\ -1 & 5 & -3 \end{pmatrix}$	A1	\mathbf{M}^{-1} correct (in terms of a) and result for $a = -1$ stated
		6	SR: After 0 scored, SC1 for \mathbf{M}^{-1} when $a = -1$, obtained correctly with some working
(ii)	(x) $(2 \ 0 \ 1)(-2)$		
	$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 2 & 0 & 1 \\ 2 & 5 & -4 \\ -1 & 5 & -3 \end{pmatrix} \begin{pmatrix} -2 \\ b \\ 1 \end{pmatrix} $	M2	Attempting to multiply $(-2 \ b \ 1)^T$ by given matrix (M0 if wrong order)
		M1	Multiplying out
	$\Rightarrow x = -\frac{3}{5}, y = b - \frac{8}{5}, z = b - \frac{1}{5}$	A2	A1 for one correct
	OR $4x + y = b - 4$		
	x - y = 1 - b o.e. M1		Eliminating one unknown in 2 ways
	·		Or e.g. $3x + z = b - 2$, $5x = -3$
			Or e.g. $3y - 4z = -b - 4$, $5y - 5z = -7$
	V		Solve to obtain one value.
	M1		Dep. on M1 above
	3		One unknown correct
	$\Rightarrow x = -\frac{3}{5}$ A1		After M0, SC1 for value of x
	$\Rightarrow x = -\frac{3}{5}$ A1		Finding the other two unknowns
	1711		I manig the other two unknowns
	$\Rightarrow y = b - \frac{8}{5}, z = b - \frac{1}{5}$ A1		Both correct
	3 3	- -	
7000	2 2 21 + 2	5	
(iii)	e.g. $3x - 3y = 2b + 2$	M1	Eliminating one unknown in 2 ways
	5x - 5y = 4	A1A1	Two correct equations
			Or e.g. $3x + 6z = b - 2$, $5x + 10z = -3$
			Or e.g. $3y + 6z = -b - 4$, $5y + 10z = -7$
	Consistent if $\frac{2b+2}{3} = \frac{4}{5}$	M1	Attempting to find <i>b</i>
	$\Rightarrow b = \frac{1}{5}$	A1	
	3	D2	
	Solution is a line	B2	10
		7	18

6 <u> </u>	Mark Schen	ne	January 20
(i) $\sinh x = \frac{e^x - e^{-x}}{2} \Rightarrow \sinh^2 x = \frac{\left(e^x - e^{-x}\right)}{4}$	$\overline{)^2}$		January 20 $e^{2x} - 2 + e^{-2x}$
$=\frac{e^{2x}-2+e^{-2x}}{4}$		B1	$e^{2x} - 2 + e^{-2x}$
$\Rightarrow 2 \sinh^2 x + 1 = \frac{e^{2x} - 2 + e^{-2x}}{2} + 1$			
$= \frac{e^{2x} + e^{-2x}}{2} = \cosh 2x$		В1	Correct completion
\Rightarrow 2 sinh 2x = 4 sinh x cosh x		B1	Both correct derivatives
\Rightarrow sinh $2x = 2 \sinh x \cosh x$		B1 4	Correct completion
i) $2 \cosh 2x + 3 \sinh x = 3$			TT 1 11 11
$\Rightarrow 2(1 + 2\sinh^2 x) + 3\sinh x = 3$ \Rightarrow 4\sinh^2 x + 3\sinh x - 1 = 0		M1 A1	Using identity Correct quadratic
$\Rightarrow 4 \sinh x + 3 \sinh x - 1 - 0$ $\Rightarrow (4 \sinh x - 1)(\sinh x + 1) = 0$		M1	Solving quadratic
$\Rightarrow \sinh x = \frac{1}{4}, -1$		A1	Both
		M1	Use of arsinh $x = \ln(x + \sqrt{x^2 + 1})$ o.e. Must obtain at least one value of x
$\Rightarrow x = \operatorname{arsinh}(\frac{1}{4}) = \ln(\frac{1 + \sqrt{17}}{4})$		A1	Must evaluate $\sqrt{x^2 + 1}$
$x = \operatorname{arsinh}(-1) = \ln(-1 + \sqrt{2})$		A1	
OR $2e^{4x} + 3e^{3x} - 6e^{2x} - 3e^x + 2 = 0$		t	
$\Rightarrow (2e^{2x} - e^x - 2)(e^{2x} + 2e^x - 1) = 0$	M1A1		Factorising quartic
$\Rightarrow e^x = \frac{1 \pm \sqrt{17}}{4} \text{ or } -1 \pm \sqrt{2}$	M1A1		Solving either quadratic
$\Rightarrow x = \ln(\frac{1+\sqrt{17}}{4}) \text{ or } \ln(-1+\sqrt{2})$	M1A1A1		Using ln (dependent on first M1)
		7	
$cosh t = \frac{5}{4} \Rightarrow \frac{e^t + e^{-t}}{2} = \frac{5}{4}$			
$\Rightarrow 2e^{2t} - 5e^t + 2 = 0$		M1	Forming quadratic in e'
$\Rightarrow (2e^t - 1)(e^t - 2) = 0$		M1	Solving quadratic
$\Rightarrow e^t = \frac{1}{2}, 2$		A1	
$\Rightarrow t = \pm \ln 2$		A1 (ag)	Convincing working
$\int_{4}^{5} \frac{1}{\sqrt{x^2 - 16}} dx = \left[\operatorname{arcosh} \frac{x}{4} \right]_{4}^{5}$		B1	
$= \operatorname{arcosh} \frac{5}{4} - \operatorname{arcosh} 1$		M1	Substituting limits
= ln 2		A1	A0 for $\pm \ln 2$
OR $\int_{4}^{5} \frac{1}{\sqrt{x^2 - 16}} dx = \left[\ln \left(x + \sqrt{x^2 - 16} \right) \right]$	5 B1		
$= \ln 8 - \ln 4$	M1		Substituting limits
= ln 2	A1		5

18

Ī	5 (i)	Horz. projection of QP = $k \cos \theta$	B1	
l		Vert. projection of QP = $k \sin \theta$	B1	
l		Subtract $OQ = \tan \theta$	B1	Clea
l			3	

Clearly obtained

$$k = -1$$

G1 Loop G1 Cusp

(iii)(A) for all
$$k$$
, y axis is an asymptote
(B) $k = 1$

(B)
$$k = 1$$
 (C) $k > 1$

3

(iv) Crosses itself at
$$(1, 0)$$

 $k = 2 \Rightarrow \cos \theta = \frac{1}{2} \Rightarrow \theta = 60^{\circ}$
 \Rightarrow curve crosses itself at 120°

(v)
$$y = 8 \sin \theta - \tan \theta$$

$$\Rightarrow \frac{dy}{d\theta} = 8 \cos \theta - \sec^2 \theta$$

$$\Rightarrow 8 \cos \theta - \frac{1}{\cos^2 \theta} = 0 \text{ at highest point}$$

$$\Rightarrow \cos^3 \theta = \frac{1}{8} \Rightarrow \cos \theta = \pm \frac{1}{2} \Rightarrow \theta = 60^\circ \text{ at top}$$

Complete method giving θ

$$\Rightarrow x = 4$$

$$y = 3$$

$$y = 3\sqrt{3}$$

A1

Both

3

(vi) RHS =
$$\frac{(k\cos\theta - 1)^2}{k^2\cos^2\theta}(k^2 - k^2\cos^2\theta)$$
 M1 Expressing one side in terms of θ

$$= \frac{(k\cos\theta - 1)^2}{k^2\cos^2\theta} \times k^2\sin^2\theta$$

$$= (k\cos\theta - 1)^2\tan^2\theta$$

$$= ((k\cos\theta - 1)\tan\theta)^2$$

$$= (k\sin\theta - \tan\theta)^2 = LHS$$
Expressing one side in terms of θ

4758 Differential Equations

1(i)	$\alpha^2 + 6\alpha + 9 = 0$	M1	Auxiliary equation	
	$\alpha = -3$ (repeated)	A1		
	$y = e^{-3t} \left(A + Bt \right)$	F1	CF for their roots	
	$PI y = a \sin t + b \cos t$	B 1		
	$\dot{y} = a\cos t - b\sin t$			
	$\ddot{y} = -a\sin t - b\cos t$			
	$-a\sin t - b\cos t + 6(a\cos t - b\sin t)$			
	$+9(a\sin t + b\cos t) = 0.5\sin t$	M1	Differentiate twice and substitute	
	8a - 6b = 0.5	M1	Compare coefficients	
	8b + 6a = 0	M1	Solve	
	Solving gives $a = 0.04, b = -0.03$	A1		
	GS $y = e^{-3t} (A + Bt) + 0.04 \sin t - 0.03 \cos t$	F1	PI + CF with two arbitrary constants	
				9
(ii)	$t = 0, y = 0 \Rightarrow A = 0.03$	M1	Use condition	
	$\dot{y} = e^{-3t} (B - 3A - 3Bt) + 0.04 \cos t + 0.03 \sin t$	M1	Differentiate	
		F1	Follows their GS	
	$t = 0, \ \dot{y} = 0 \Longrightarrow 0 = B - 3A + 0.04$	M1	Use condition	
	$y = 0.01(e^{-3t}(3+5t)+4\sin t-3\cos t)$	A1	Cao	
				5
(iii)	For large t , the particle oscillates	B1	Oscillates	
	With amplitude constant (≈ 0.05)	B 1	Amplitude approximately constant	
				2
(iv)	$t = 20\pi \Rightarrow e^{-60\pi}$ very small	M1		
	$y \approx -0.03$	A1		
	$\dot{y} \approx 0.04$	A1		
				3
(v)	$y = e^{-3t} \left(C + Dt \right)$	M1	CF of correct type or same type as in (i)	i
	A	A1	Must use new arbitrary constants	
	20π	/	0.02 20	
	20%	B1√	$y \approx -0.03 \text{ at } t = 20\pi$	
	-0.03	B1 B1	Gradient at 20π consistent with (iv) Shape consistent	
	'	DI	Shape consistent	
				5

		1	T	
2(a)(i)	$I = \exp \int -\tan x \mathrm{d}x$	M1	Attempt IF	
	$= \exp(-\ln \sec x)$	A1	Correct IF	
	$=(\sec x)^{-1}=\cos x$	A1	Simplified	
	$\cos x \frac{\mathrm{d}y}{\mathrm{d}x} - y \sin x = \sin x$	M1	Multiply by IF	
	$\frac{\mathrm{d}}{\mathrm{d}x}(y\cos x) = \sin x$	M1	Recognise derivative	
	1000 n = 000 n 4	M1	Integrate	
	$y\cos x = -\cos x + A$	A1	RHS (including constant)	0
	$(y = A \sec x - 1)$	A1	LHS	8
	4	M1 A1	Rearrange equation	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = (1+y)\tan x$	M1	Separate variables	
	$ \ln(1+y) = \ln\sec x + A $	A1 M1	RHS	
		A1 M1	LHS	8
(ii)	$x = 0, y = 0 \Rightarrow 0 = A - 1$	A1 M1	Use condition	
(11)	$y = \sec x - 1$	A1	CSC condition	
		B1	Shape and through origin	
	$\frac{y}{1}$ $\frac{1}{\pi/2}$ $\frac{\pi}{2}$	B1	Behaviour at $\pm \frac{1}{2}\pi$	
(I-)(2)		N/I	A 44	4
(b)(i)		M1 A1	Attempt one curve Reasonable attempt at one curve	
		M1	Attempt second curve	
		A1	Reasonable attempt at both curves	
(ii)	$y' = (1 + y^2) \tan x$	M1	Rearrange	4
	$x = 0, y = 1 \Rightarrow y' = 0$			
	$y(0.1) = 1 + 0.1 \times 0 = 1$	M1	Use of algorithm	
	$x = 0.1, y = 1 \Rightarrow y' = 0.201$	A1	3	
	$y(0.2) = 1 + 0.1 \times 0.201$	M1	Use of algorithm for second step	
	=1.0201	E1		
				5
(iii)	$\tan \frac{\pi}{2}$ undefined so cannot go past $\frac{\pi}{2}$	M1		
	So approximation cannot continue to 1.6 > $\frac{\pi}{2}$	A1		
	2			
(iv)	Reduce step length	B1		2
(14)	reduce step tength	DI		1

			nn	V.D.	M. Naths Cloud Com
4758	Mark Sch	eme	January	2 mg	Those of the second
3(i)	$\dot{x} = Ae^{-kt}$	M1	Any valid method (or no method shown)		JOUD COM
	$t = 0, \dot{x} = v_1 \Longrightarrow A = v_1$	A1 M1	Use condition		
	$\dot{x} = v_1 e^{-kt}$	A1			
	$x = \int v_1 e^{-kt} dt$	M1	Integrate		
	$= -\frac{v_1}{k} e^{-kt} + B$	A1			
	$t = 0, x = 0 \Longrightarrow B = \frac{v_1}{k}$	M1	Use condition		
	$x = \frac{v_1}{k} \left(1 - e^{-kt} \right)$	E1			-
(ii)	$\int \frac{\mathrm{d}\dot{y}}{\dot{y} + g/k} = \int -k \mathrm{d}t$	M1	Separate and integrate	8	
	$ \ln\left(\dot{y} + \frac{g}{k}\right) = -kt + C $	A1	LHS		
		A1	RHS		
	$\dot{y} + \frac{g}{k} = De^{-kt}$	M1	Rearrange, dealing properly with constant		
	$t = 0, \dot{y} = v_2 \Rightarrow D = v_2 + \frac{g}{k}$	M1	Use condition		
	$\dot{y} = \left(v_2 + \frac{g}{k}\right)e^{-kt} - \frac{g}{k}$	A1			
	$y = \int \left(\left(v_2 + \frac{g}{k} \right) e^{-kt} - \frac{g}{k} \right) dt$	M1	Integrate		
	$= -\frac{1}{k} \left(v_2 + \frac{g}{k} \right) e^{-kt} - \frac{g}{k} t + E$	A1			
	$t = 0, y = 0 \Rightarrow 0 = -\frac{1}{k} \left(v_2 + \frac{g}{k} \right) + E$	M1	Use condition		
	$y = \frac{1}{k^2} (kv_2 + g) (1 - e^{-kt}) - \frac{g}{k} t$	E1			
	K K			1 0	-
(iii)	$1 - e^{-kt} = \frac{kx}{v_1}$	M1			
	$t = -\frac{1}{k} \ln \left(1 - \frac{kx}{v_1} \right)$	A1			
	$y = \left(\frac{kv_2 + g}{kv_1}\right)x + \frac{g}{k^2}\ln\left(1 - \frac{kx}{v_1}\right)$	M1	Substitute		
	$y = \left(\frac{1}{kv_1}\right)^x + \frac{1}{k^2} \ln \left(1 - \frac{1}{v_1}\right)$	E1	Convincingly shown	4	-
(iv)	$x = 8 \Rightarrow y = 4.686$	M1			-
	Hence will not clear wall	A1		2	_
1	<u> </u>	<u> </u>	1		J

4(i)	$4y = -3x + 23 - \dot{x}$	M1	y or 4y in terms of x, \dot{x}	
- (-)	$4\dot{y} = -3\dot{x} - \ddot{x}$	M1	Differentiate	
	$\frac{1}{4}(-3\dot{x} - \ddot{x}) = 2x + \frac{1}{4}(-3x + 23 - \dot{x}) - 7$	M1	Substitute for <i>y</i>	
	$\begin{vmatrix} 4 & 4 \\ -3\dot{x} - \ddot{x} = 8x - 3x + 23 - \dot{x} - 28 \end{vmatrix}$	M1	Substitute for \dot{y}	
	$\Rightarrow \ddot{x} + 2\dot{x} + 5x = 5$	E1		
				5
(ii)	$\alpha^2 + 2\alpha + 5 = 0$	M1	Auxiliary equation	
	$\Rightarrow \alpha = -1 \pm 2i$	A1 M1	CF for complex roots	
	CF $e^{-t} (A \cos 2t + B \sin 2t)$	F1	CF for their roots	
			Ci foi then roots	
	PI $x = \frac{5}{5} = 1$	B 1	Constant PI	
		B 1	Correct PI	
	GS $x=1+e^{-t}(A\cos 2t + B\sin 2t)$	F1	PI + CF with two arbitrary	
	,		constants	7
(····)	1 (2+ 22;)	3.44		+
(iii)	$y = \frac{1}{4}(-3x + 23 - \dot{x})$	M1		
	$= \frac{1}{4} \left[-3 - 3e^{-t} \left(A\cos 2t + B\sin 2t \right) + 23 \right]$			
	- C	M1	Differentiate and substitute	
	$+e^{-t}(A\cos 2t + B\sin 2t)$	F1	Expression for \dot{x} follows their GS	
	$-e^{-t}\left(-2A\sin 2t+2B\cos 2t\right)$			
	$y = 5 - \frac{1}{2}e^{-t}((A+B)\cos 2t + (B-A)\sin 2t)$	A1		
	2 (, , , , , , , , , , , , , , , , , ,			4
(iv)	$t = 0, x = 8 \Rightarrow 1 + A = 8 \Rightarrow A = 7$	M1	Use condition	7
	$t=0, y=0 \Rightarrow 5-\frac{1}{2}(A+B)=0 \Rightarrow B=3$	M1	Use condition	
	$x = 1 + e^{-t} (7\cos 2t + 3\sin 2t)$	A 1		
	,	A1		
	$y = 5 - e^{-t} (5\cos 2t - 2\sin 2t)$	A1		
(v)	For large t , e^{-t} tends to 0	M1		4
	$y \rightarrow 5$	B1		
	$x \rightarrow 1$	B1		
	$\Rightarrow y > x$	E1	Complete argument	
1				4

4761 Mechanics 1

		1		
1 (i)	0 < t < 2, v = 2 2 < t < 3.5, v = -5	B1 B1	Condone '5 downwards' and ' – 5 downwards'	2
(ii)	$\begin{array}{c} s \\ 2 \\ \hline 2 \\ \hline 3.5 \\ \hline \end{array} \rightarrow t$		Condone intent – e.g. straight lines free-hand and scales not labelled; accept non-vertical sections at $t = 2 \& 3.5$.	
	'	B1	Only horizontal lines used and 1 st two parts present. BOD <i>t</i> -axis section. One of 1 st 2 sections correct. FT (i) and allow if answer correct with (i) wrong All correct. Accept correct answer with (i) wrong. FT (i) only if 2 nd section –ve in (i)	2
(iii)	(A) upwards; (B) and (C) downwards	E1	All correct. Accept +/- ve but not towards/away from O Accept forwards/backwards. Condone additional wrong statements about position.	1
2 (i)		M1 A1	Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ If vector \mathbf{a} seen, isw.	5
(ii)	either $\mathbf{r} = \begin{pmatrix} -1\\2 \end{pmatrix} + \begin{pmatrix} 2\\-3 \end{pmatrix} \times 4 + \frac{1}{2}\mathbf{a} \times 4^{2}$ $\mathbf{r} = \begin{pmatrix} 27\\14 \end{pmatrix} \text{ so } \begin{pmatrix} 27\\14 \end{pmatrix} \text{ m}$ or	M1 A1 A1 A1 A1	For use of $\mathbf{s} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$ with their a. Initial position may be omitted. FT their a. Initial position may be omitted. cao. Do not condone magnitude as final answer. Use of $\mathbf{s} = 0.5t(\mathbf{u} + \mathbf{v})$ Initial position may be omitted. Correct substitution. Initial position may be omitted. cao Do not condone mag as final answer. SC2 for $\binom{28}{12}$	
			(12)	3

4761	Using N2L $\mathbf{F} = 5\mathbf{a} = \begin{pmatrix} 12.5 \\ 15 \end{pmatrix}$ so $\begin{pmatrix} 12.5 \\ 15 \end{pmatrix}$ N $ \mathbf{F} = \sqrt{(-1)^2 + 5^2}$ $= \sqrt{26} = 5.0990 = 5.10 \text{ (3 s. f.)}$ Angle with \mathbf{j} is arctan(0.2) so 11.309 so 11.3° (3 s. f.) $\begin{pmatrix} -2 \\ 3b \end{pmatrix} = 4 \begin{pmatrix} -1 \\ 5 \end{pmatrix} + \begin{pmatrix} 2a \\ a \end{pmatrix}$ $a = 1, b = 7$ so $\mathbf{G} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and $\mathbf{H} = \begin{pmatrix} -2 \\ 21 \end{pmatrix}$ or $\mathbf{G} = 2\mathbf{i} + \mathbf{j}$ and $\mathbf{H} = -2\mathbf{i} + 21\mathbf{j}$ 20cos 15 = 19.3185 so 19.3 N (3 s. f.) in direction BC	Mark Scheme January 20					
(iii)	Using N2L						
	$\mathbf{F} = 5\mathbf{a} = \begin{pmatrix} 12.5 \\ 15 \end{pmatrix}$ so $\begin{pmatrix} 12.5 \\ 15 \end{pmatrix}$ N	M1	Use of $\mathbf{F} = m\mathbf{a}$ or $\mathbf{F} = mg\mathbf{a}$.				
	(13) (13)	F1	FT their a only. Do not accept magnitude as final ans.				
				7			
2 (3)		M1					
) (I)	$ \mathbf{F} = \sqrt{(-1)^2 + 5^2}$ = $\sqrt{26} = 5.0990 = 5.10 (3 s. f.)$	A1	Accept $\sqrt{-1^2 + 5^2}$ even if taken to be $\sqrt{24}$				
		M1 A1	accept $arctan(p)$ where $p = \pm 0.2$ or ± 5 o.e.				
		A1	Cao	4			
(ii)	$\begin{pmatrix} -2 \\ 2h \end{pmatrix} = 4 \begin{pmatrix} -1 \\ 5 \end{pmatrix} + \begin{pmatrix} 2a \\ a \end{pmatrix}$	M1	$\mathbf{H} = 4\mathbf{F} + \mathbf{G}$ soi				
	(3b) (3) (a)	M1	Formulating at least 1 scalar equation from their				
	a = 1, $b = 7$	A1	vector equation soi a correct or G follows from their wrong a				
		A1	Н сао				
				4			
				8			
(i)		B1	Accept no direction. Must be evaluated				
				1			
(ii)	$T \sin 50 = 19.3185$	M1	Accept $\sin \leftrightarrow \cos$ but not (i) $\times \sin 50$				
	so $T = 25.2185$ so $25.2 \text{ N } (3 \text{ s. f.})$	F1	FT their 19.3 only. cwo	2			
(iii)	$R + 20 \sin 15 - 2.5g - 25.2185 \times \cos 50 = 0$	M1	Allow 1 force missing or 1 tension not resolved. FT <i>T</i> . No extra forces. Accept mass used.				
		B1	Accept sin ↔ cos. Weight correct				
	R = 35.5337 so 35.5 N (3 s. f.)	A1 A1	All correct except sign errors. FT their <i>T</i> cao. Accept 35 or 36 for 2. s.f.				
				4			
(iv)	The horizontal resolved part of the 20 N force is not changed.	E1	Accept no reference to vertical component but do not accept 'no change' to both components. No need to be explicit that value of tension in AB depends only on horizontal component of force at C				
			, j	1			
				8			

4761	Ма	ırk Sch	Differentiating cao	42
4701	Ma	IK OCII	January 20	The to
5(i)	a = 6t - 12	M1 A1	Differentiating cao	2
(ii)	We need $\int_{1}^{3} (3t^2 - 12t + 14) dt$	M1	Integrating. Neglect limits.	
	$= \left[t^3 - 6t^2 + 14t\right]_1^3$	A1	At least two terms correct. Neglect limits.	
	either = $(27 - 54 + 42) - (1 - 6 + 14)$	M1	Dep on 1 st M1. Use of limits with attempt at subtraction seen.	
	= 15 - 9 = 6 so 6 m or	A1	cao	
	$s = t^3 - 6t^2 + 14t + C$ s = 0 when $t = 1$ gives 0 = 1 - 6 + 14 + C so $C = -9Put t = 3 to give$	M1	Dep on 1 st M1. An attempt to find C using $s(1) = 0$ and then evaluating $s(3)$.	
	s = 27 - 54 + 42 - 9 = 6 so 6 m.	A1	cao	4
(iii)	v > 0 so the particle always travels in the same (+ve) direction As the particle never changes direction, the final distance from the starting point is the displacement.	E1 E1	Only award if explicit Complete argument	
	is the displacement.			2
				8
6 (i)	Component of weight down the plane is $1.5 \times 9.8 \times \frac{2}{7} = 4.2 \text{ N}$	M1 E1	Use of mgk where k involves an attempt at resolution Accept $1.5 \times 9.8 \times \frac{2}{7} = 4.2$ or $14.7 \times \frac{2}{7} = 4.2$ seen	2
(ii)	Down the plane. Take F down the plane.			
	4.2 - 6.4 + F = 0 so $F = 2.2$. Friction is 2.2 N down the	M1 A1	Allow sign errors. All forces present. No extra forces. Must have direction. [Award 1 for 2.2 N seen and	
(iii)	plane	 	2 for 2.2 N down plane seen]	2
(iii)	F up the plane N2L down the plane $4.2 - F = 1.5 \times 1.2$	M1	N2L. $F = ma$. No extra forces. Allow weight term missing or wrong	
	so $F = 4.2 - 1.8 = 2.4$ Friction is 2.4 N up the plane	A1 A1 A1	Allow only sign errors ± 2.4 cao. Accept no reference to direction if $F = 2.4$.	
(iv)	$2^2 = 0.8^2 + 2 \times 1.2 \times s$	M1 A1	Use of $v^2 = u^2 + 2as$ or sequence All correct in 1 or 2-step method	4
	s = 1.4 so 1.4 m	A1		3

			nn	4
4761		Mark Scho	Frictions and coupling force correctly labelled with arrows. All forces present and properly labelled with	Was the Ch
(v)	Diagrams	B1	Frictions and coupling force correctly labelled with arrows.	104
		B1	All forces present and properly labelled with arrows.	
ļ	either	'		
	Up the plane $10^{-2.5} \times 0.8 \times 2^{-2.5} \times 0.7 = 2.5 \times 0.00$	M1	N2L. $F = ma$. No extra forces. Condone sign errors.	
	$10 - 3.5 \times 9.8 \times \frac{2}{7} - (2.3 + 0.7) = 3.5a$		Allow total/part weight or total/part friction omitted (but not both). Allow mass instead of weight and mass/weight not or wrongly resolved.	
	$a = -0.8 \text{ so } 0.8 \text{ m s}^{-2}$.	B1	Correct overall mass and friction	
	down the plane For barge B up the plane	A1	Clear description or diagram	
	$T - 2 \times 9.8 \times \frac{2}{7} - 0.7 = 2 \times (-0.8)$	M1	N2L on one barge with their $\pm a$ (\neq 1.2 or 0). All forces present and weight component attempted. No extra forces. Condone sign errors.	
ļ	T = 4.7 so 4.7 N. Tension	A1	cao	
	or (separate equations of motion)		In eom for A or B allow weight or friction missing and also allow mass used instead of weight and wt not or wrongly resolved. In other equn weight component attempted and friction term present.	
	Barge A	M1	N2L. Do not allow $F = mga$. No extra forces. Condone sign errors.	
	Barge B	M1	N2L. Do not allow $F = mga$. No extra forces. Condone sign errors.	
	1	M1	Solving a pair of equns in a and T	
	$a = -0.8 \text{ so } 0.8 \text{ m s}^{-2}$.		~	
	down the plane $T = 4.7$ so 4.7 N. Tension	A1 A1	Clear description or diagram	
	1 - 4./ 80 4./ IN. TEHSION	Aı	cao cwo	7
	 			18
7 (i)	y(0) = 1	B1		1
	Either			
(ii)	$\frac{1}{2}(20+5)-5=7.5$	M1 A1	Use of symmetry e.g. use of $\frac{1}{2}(20+5)$ 12.5 o.e. seen	
	I	A1 A1	7.5 cao	
	or	M1	Attempt at y' and to solve $y' = 0$	
	I	A1	$k(15-2x)$ where $k = 1$ or $\frac{1}{100}$	
	I	A1	7.5 cao, seen as final answer	
	$y(7.5) = \frac{1}{100} (100 + 15 \times 7.5 - 7.5^{2})$	M1	FT their 7.5	
ļ	$=\frac{25}{16}$ (1.5625) so 1.5625 m	E1	AG	
	<u> </u>		[SC2 only showing 1.5625 leads to $x = 7.5$]	5

4761	$4.9t^2 = \frac{25}{16} \ (1.5625)$	Mark Scho	Use of $s = ut + 0.5at^2$ with $u = 0$. Condone use of $\pm 10, \pm 9.8, \pm 9.81$. If sequence of <i>suvat</i> used,	M. Mains Cloud Con
	$t^2 = 0.31887$ so $t = \pm 0.56469$ Hence 0.565 s (3 s. f.)	A1 E1	complete method required. In any method only error accepted is sign error AG. Condone no reference to –ve value. www. 0.565 must be justified as answer to 3 s. f.	3
(iv)	$\dot{x} = \frac{12.5}{0.56469} = 22.1359$ so 22.1 m s ⁻¹ (3 s. f.)) Either Time is $\frac{20}{12.5} \times 0.56469$ s so 0.904 s (3 s. f.) or Time is $\frac{20}{22.1359}$ s = 0.903507 so 0.904 s (3 s. f.) or (iii) + $\frac{7.5}{\text{their }\dot{x}}$ so 0.904 s (3 s. f.)	M1 B1 E1 M1 A1 M1 A1 M1 A1	or 25 / (2×0.56469) Use of 12.5 or equivalent 22.1 must be justified as answer to 3 s. f. Don't penalise if penalty already given in (iii). cao Accept 0.91 (2 s. f.) cao Accept 0.91 (2 s. f.)	5
(v)	$v = \sqrt{\dot{x}^2 + \dot{y}^2}$ $\dot{y}^2 = 0^2 + 2 \times 9.8 \times \frac{25}{16} \text{ or }$ $\dot{y} = 0 + 9.8 \times 0.5646$ $= \frac{245}{8} (30.625) \text{ or } \dot{y} = \pm 5.539$ so $v = \sqrt{490 + 30.625} = 22.8172 \text{ m s}^{-1}$ so $22.8 \text{ m s}^{-1} (3 \text{ s. f.})$	M1 M1 A1	Must have attempts at both components Or equiv. $u = 0$. Condone use of ± 10 , ± 9.8 , ± 9.81 . Accept wrong s (or t in alternative method) Or equivalent. May be implied. Could come from (iii) if $v^2 = u^2 + 2as$ used there. Award marks again. cao. www	4 18

4762 Mechanics 2

1 (a)				
(i)	Let vel of Q be $v \rightarrow 6 \times 1 = 4v + 2 \times 4$ $v = -0.5 \text{ so } 0.5 \text{ m s}^{-1}$ in opposite direction to R	M1 A1 A1 A1	Use of PCLM Any form Direction must be made clear. Accept – 0.5 only if + ve direction clearly shown	4
(ii)	Let velocities after be R: $v_R \rightarrow$; S: v_S			
	$\begin{array}{c} \rightarrow \\ \text{PCLM +ve} \rightarrow 4 \times 2 - 1 \times 3 = 2v_R + 3v_S \end{array}$	M1	PCLM	
	$2v_{\rm R} + 3v_{\rm S} = 5$	A1	Any form	
	$NEL + ve \rightarrow$			
	$\frac{v_{\rm S} - v_{\rm R}}{-1 - 4} = -0.1$	M1	NEL	
	so $v_{\rm S} - v_{\rm R} = 0.5$	A1	Any form	
	Solving gives	A 1	Direction not required	
	$v_{R} = 0.7 \rightarrow v_{S} = 1.2 \rightarrow$	A1 A1	Direction not required Direction not required	
	VS 1.2 ->	AI	Award cao for 1 vel and FT second	
				6
(iii)	R and S separate at 0.5 m s ⁻¹	M1	FT their result above. Either from NEL or from difference in final velocities	
	Time to drop <i>T</i> given by			
	$0.5 \times 9.8T^2 = 0.4 \text{ so } T = \frac{2}{7} (0.28571)$	B1		
	so distance is $\frac{2}{7} \times 0.5 = \frac{1}{7}$ m	A1	cao	
	(0.142857m)			
				<u>-3</u>
(b)	before after			
()	v			
	u u u u			
	$\begin{array}{c} u \to u \\ v \to (-)ev \end{array}$	B1	Accept	
	$V \rightarrow (-)eV$ KE loss is	B1	Accept $v \to ev$	
	$\frac{1}{2}m(u^2+v^2) - \frac{1}{2}m(u^2+e^2v^2)$	M1	Attempt at difference of KEs	
	$= \frac{1}{2}mu^2 + \frac{1}{2}mv^2 - \frac{1}{2}mu^2 - \frac{1}{2}me^2v^2$	E1	Clear expansion and simplification	
	$= \frac{1}{2}mv^2\left(1-e^2\right)$		of correct expression	
	2 (1 0)		of correct expression	4
				17

	_		_		Ç
2(i)	GPE is 1200 × 9.8 × 60 = 705 600 Power is (705 600 + 1 800 000) ÷ 120	B1 M1 B1	Need not be evaluated power is WD ÷ time 120 s		
	= 20 880 W = 20 900 W (3 s. f.)	A1	cao	4	
(ii)	Using $P = Fv$. Let resistance be $R N$ 13500 = 18 F	M1	Use of $P = Fv$.		
	so $F = 750$	A 1			
	As v const, $a = 0$ so $F - R = 0$ Hence resistance is 750 N	E1	Needs some justification		
	We require 750 × 200 = 150 000 J (= 150 kJ)	M1	Use of WD = Fd or Pt		
		F1	FT their F	5	
(iii)		M1	Use of W-E equation with 'x'		
	$\frac{1}{2} \times 1200 \times (9^2 - 18^2)$	B1	2 KE terms present		
	$=1200\times9.8\times x\sin 5-1500x$	M1 A1	GPE term with resolution GPE term correct		
	Hence 145800 = 475.04846x	A1	All correct		
	so $x = 306.91$ so 307 m (3 s, f,)	A1	cao	6	
(iv)	P = Fv	В1			
	and N2L gives $F - R = 1200a$ Substituting gives $P = (R + 1200a)v$	B1 E1	Shown		
	F - (K + 1200a)V	EI	Shown		
	If $a \neq 0$, v is not constant. But P and R are constant so a cannot be constant.	E1			
				19	_
2 (1)	T . C . 1 . D			17	
3 (i) (A)	Let force be <i>P</i> a.c. moments about C				
()	$P \times 0.125 - 340 \times 0.5 = 0$	M1	Moments about C. All forces present. No extra forces.		
	P = 1360 so 1360 N	A1 A1	Distances correct		
	1 - 1300 80 1300 IV	Al	cao	3	
(i) (<i>B</i>)					
	c.w. moments about E $P \times 2.125 - 340 \times (2 - 0.5) = 0$	M1	Moments about E. All forces present. No extra		
	2.125 5 10 (2 0.5) 0		forces.		
	P = 240 so 240 N	A1 A1	Distances correct cao		
	210 30 210 11	7 1 1		3	

				V,
(ii)	$Q\sin\theta \times 2.125 + Q\cos\theta \times 0.9$ $= \frac{25.5Q}{13} + \frac{4.5Q}{13}$	M1 B1	Moments expression. Accept $s \leftrightarrow c$. Correct trig ratios or lengths	
	$= \frac{30Q}{13} \text{ so } \frac{30Q}{13} \text{ N m}$	E1	Shown	3
(iii)	We need $\frac{30Q}{13} = 340 \times 1.5$ so $Q = 221$ Let friction be F and normal reaction R	M1 E1	Moments equn with all relevant forces Shown	
	Resolve \rightarrow $221\cos\theta - F = 0$ so $F = 85$ Resolve \uparrow	M1 A1		
	221 $\sin \theta + R = 340$ so $R = 136$ $F < \mu R$ as not on point of sliding so $85 < 136\mu$	M1 A1 M1 A1	Accept \leq or $=$ Accept \leq . FT their F and R	
	so $\mu > \frac{5}{8}$	E1		9
				18
4 (i)	$4000 \left(\frac{\overline{x}}{\overline{y}}\right) = 4800 \left(\frac{30}{40}\right) - 800 \left(\frac{50}{20}\right)$	M1 A1	Any complete method for c.m. Either one RHS term correct or one component of both RHS terms correct	
	so $\overline{x} = 26$ $\overline{y} = 44$	E1 A1	[SC 2 for correct \overline{y} seen if M 0]	4
(ii)	$250 \left(\frac{\overline{x}}{\overline{y}}\right)$ $110 \left(\frac{0}{y}\right) \cdot 10 \left(\frac{20}{y}\right) \cdot 10 \left(\frac{40}{y}\right) \cdot 20 \left(\frac{50}{y}\right) \cdot 10 \left(\frac{60}{y}\right)$	M1	Any complete method for c.m.	
	$=110\binom{0}{55} + 40\binom{20}{0} + 40\binom{40}{20} + 20\binom{50}{40} + 40\binom{60}{60}$		Any 2 edges correct mass and c.m. or any 4 edges correct with mass and x or y c.m. coordinate correct.	
	$\overline{x} = 23.2$ $\overline{y} = 40.2$	B1 E1 A1	At most one consistent error	5
L	1	L		ا ا

110 – 40.2 G 40.2 N B1 Indicating c.m. vertically below Q	······································
Angle is $\arctan\left(\frac{23.2}{110-40.2}\right)$ B1 Clearly identifying correct angle (may be if and lengths) Award for $\arctan\left(\frac{b}{a}\right)$ where $b = 23.2$ and a or 40.2 or where $b = 69.8$ or 40.2 and $a = 20$. Allow use of their value for y only.	= 69.8
= 18.3856 so 18.4° (3 s. f.) A1 cao	4
(iv) $10\left(\frac{\overline{x}}{\overline{y}}\right) = 2 \times 1.5 \times \left(\frac{26}{44}\right) + 7\left(\frac{23.2}{40.2}\right)$ $\overline{x} = 24.04 \text{ so } 24.0 \text{ (3 s.f.)}$ $\overline{y} = 41.34 \text{ so } 41.3 \text{ (3 s.f.)}$ M1 Combining the parts using masses B1 Using both ends A1 All correct Cao F1 FT their y values only.	
	5 18

4763 Mechanics 3

1(a) (i)	[Density] = ML^{-3} [Kinetic Energy] = $ML^{2}T^{-2}$ [Power] = $ML^{2}T^{-3}$	B1 B1 B1	(Deduct B1 for kg m ⁻³ etc)	3
(ii)	$ML^2 T^{-3} = [\eta]L(LT^{-1})^2$	B1	For $[v] = LT^{-1}$ Can be earned in (iii)	
	$[\eta] = ML^{-1}T^{-1}$	M1 A1	Obtaining the dimensions of η	3
(iii)	$ML^{2}T^{-3} = (ML^{-3})^{\alpha}L^{\beta}(LT^{-1})^{\gamma}$ $\alpha = 1$ $-3 = -\gamma$ $\gamma = 3$ $2 = -3\alpha + \beta + \gamma$ $\beta = 2$	B1 cao M1 A1 M1 A1	Considering powers of T (No ft if $\gamma = 0$) Considering powers of L Correct equation (ft requires 4 terms) (No ft if $\beta = 0$)	6
(b)	EE at start is $\frac{1}{2}k \times 0.8^2$ EE at end is $\frac{1}{2}k \times 0.3^2$ $\frac{1}{2}k \times 0.8^2 = \frac{1}{2}k \times 0.3^2 + 5.5 \times 9.8 \times 3.5$ Stiffness is 686 N m ⁻¹	M1 A1 A1 M1 F1 A1	Calculating elastic energy k may be $\frac{\lambda}{l}$ or $\frac{\lambda}{1.2}$ Equation involving EE and PE (must have three terms) (A0 for $\lambda = 823.2$)	6
				[18]

2				
2 (a)	$\int \pi x y^2 dx = \int_0^a \pi x (a^2 - x^2) dx$	M1	Limits not required	
	$=\pi \left[\frac{1}{2}a^2x^2 - \frac{1}{4}x^4 \right]_0^a$	A1	For $\frac{1}{2}a^2x^2 - \frac{1}{4}x^4$	
	$=\frac{1}{4}\pi a^4$	A1		
	$\overline{x} = \frac{\frac{1}{4}\pi a^4}{\frac{2}{3}\pi a^3}$	M1		
	$=\frac{3}{8}a$	E1		_
(b)				5
(i)	Area is $\int_{1}^{4} (2 - \sqrt{x}) dx$	M1	Limits not required	
	$= \left[2x - \frac{2}{3}x^{\frac{3}{2}} \right]_{1}^{4} (=\frac{4}{3})$	A1	For $2x - \frac{2}{3}x^{\frac{3}{2}}$	
	$\int x y \mathrm{d}x = \int_{1}^{4} x (2 - \sqrt{x}) \mathrm{d}x$	M1	Limits not required	
	$= \left[x^2 - \frac{2}{5}x^{\frac{5}{2}} \right]_1^4 (=\frac{13}{5})$	A1	For $x^2 - \frac{2}{5}x^{\frac{5}{2}}$	
	$\overline{x} = \frac{\frac{13}{5}}{\frac{4}{3}} = \frac{39}{20} = 1.95$	A1		
	$\int \frac{1}{2} y^2 dx = \int_1^4 \frac{1}{2} (2 - \sqrt{x})^2 dx$	M1	$\int (2-\sqrt{x})^2 dx or \int ((2-y)^2 - 1)y dy$	
	$= \left[2x - \frac{4}{3}x^{\frac{3}{2}} + \frac{1}{4}x^2 \right]_1^4 (=\frac{5}{12})$	A2	For $2x - \frac{4}{3}x^{\frac{3}{2}} + \frac{1}{4}x^2$ or $\frac{3}{2}y^2 - \frac{4}{3}y^3 + \frac{1}{4}y^4$ Give A1 for two terms correct, or all correct with $\frac{1}{2}$ omitted	
	$\overline{y} = \frac{\frac{5}{12}}{\frac{4}{4}} = \frac{5}{16} = 0.3125$	A1	Correct with /2 offitted	
	$y = \frac{4}{43} = 16$			9
(ii)	Taking moments about A $T_C \times 3 - W \times 0.95 = 0$	M1 A1	Moments equation (no force omitted) Any correct moments equation (May involve both T_A and T_C) Accept Wg or $W = \frac{4}{3}$, $\frac{4}{3}g$ here	
	$T_A + T_C = W$	M1	Resolving vertically (or a second moments equation)	
	$T_A = \frac{41}{60}W$, $T_C = \frac{19}{60}W$	A1	Accept 0.68W, 0.32W	
				4 [18]
L		<u> </u>		[10]

		1	T	, ,
3 (i)	By conservation of energy, $\frac{1}{2} \times 0.6 \times 6^2 - \frac{1}{2} \times 0.6 v^2 = 0.6 \times 9.8 (1.25 - 1.25 \cos \theta)$ $36 - v^2 = 24.5 - 24.5 \cos \theta$ $v^2 = 11.5 + 24.5 \cos \theta$	M1 A1	Equation involving KE and PE	
				3
(ii)	$T - 0.6 \times 9.8 \cos \theta = 0.6 \times \frac{v^2}{1.25}$ $T - 5.88 \cos \theta = 0.48(11.5 + 24.5 \cos \theta)$	M1 A1 M1 A1	For acceleration $\frac{v^2}{r}$ Substituting for v^2	
	$T = 5.52 + 17.64\cos\theta$			4
(iii)	String becomes slack when $T = 0$	M1		
	$\cos \theta = -\frac{5.52}{17.64}$ ($\theta = 108.2^{\circ}$ or 1.889 rad)	A1	May be implied	
	$v^2 = 11.5 - 24.5 \times \frac{5.52}{17.64}$	M1	or $0.6 \times 9.8 \times \frac{5.52}{17.64} = 0.6 \times \frac{v^2}{1.25}$	
	Speed is $1.96 \mathrm{m s^{-1}}$ (3 sf)	A1 cao	or $-0.6 \times 9.8 \times \frac{v^2 - 11.5}{24.5} = 0.6 \times \frac{v^2}{1.25}$	4
(iv)	$T_1 \cos \theta = mg$ $T_1 \times \frac{1.2}{1.25} = 0.6 \times 9.8 \text{ (where } \theta \text{ is angle COP)}$	M1 A1	Resolving vertically	
	Tension in OP is 6.125 N	A1		
	$T_1\sin\theta + T_2 = \frac{mv^2}{0.35}$	M1	Horizontal equation (three terms)	
	$6.125 \times \frac{0.35}{1.25} + T_2 = \frac{0.6 \times 1.4^2}{0.35}$	F1B1	For LHS and RHS	
	Tension in CP is 1.645 N	A1		_
				[18]
	I .	1		L-~1

		1		
4(i)		M1	Using Hooke's law	
	$T_{\rm AP} = \frac{7.35}{1.5} \times 0.05 (=0.245)$	A1	or $\frac{7.35}{1.5}$ (AP –1.5)	
	$T_{\rm BP} = \frac{7.35}{2.5} \times 0.5 (=1.47)$	A1	or $\frac{7.35}{2.5}(2.05 - AP)$	
	Resultant force up the plane is $T_{\rm BP} - T_{\rm AP} - mg \sin 30^{\circ}$ $= 1.47 - 0.245 - 0.25 \times 9.8 \sin 30^{\circ}$	M1	2.3	
	=1.47-0.245-1.225			
	= 0 Hence there is no acceleration	F1	Compositive above	
	Tience there is no acceleration	E1	Correctly shown	5
(ii)	$T_{\rm AP} = \frac{7.35}{1.5}(0.05 + x) (= 0.245 + 4.9x)$	B1		
	$T_{\rm BP} = \frac{7.35}{2.5} (4.55 - 1.55 - x - 2.5)$	M1		
	= 2.94(0.5 - x)			
	=1.47-2.94x	E1		3
(;;;)	12			3
(iii)	$T_{\rm BP} - T_{\rm AP} - mg\sin 30^\circ = m\frac{\mathrm{d}^2 x}{\mathrm{d}t^2}$	M1	Equation of motion parallel to plane	
	$(1.47 - 2.94x) - (0.245 + 4.9x) - 1.225 = 0.25 \frac{d^2x}{dt^2}$ $\frac{d^2x}{dt^2} = -31.36x$	A2	Give A1 for an equation which is correct apart from sign errors	
	Hence the motion is simple harmonic	E1	Must state conclusion. Working must be fully correct (cao) If a is used for accn down plane, then	
	Period is $\frac{2\pi}{\sqrt{31.36}} = \frac{2\pi}{5.6}$		a = 31.36x can earn M1A2; but E1 requires comment about directions	
	Period is 1.12 s (3 sf)	B1 cao	Accept $\frac{5\pi}{14}$	
				5
(iv)	$x = -0.05\cos 5.6t$	M1	For $A\sin \omega t$ or $A\cos \omega t$	
	$x = -0.03\cos 3.6t$	A1	Allow $\pm 0.05 \sin/\cos 5.6t$ Implied by $v = \pm 0.28 \sin/\cos 5.6t$	
	$v = 0.28 \sin 5.6t$	3.61		
	$-0.2 = 0.28 \sin 5.6t$ OR $0.2^2 = 31.36(0.05^2 - x^2)$	M1	Using $v = \pm 0.2$ to obtain an equation for t	
	$x = (\pm) 0.035$			
	$0.035 = -0.05\cos 5.6t$ M1			
	$5.6t = \pi + 0.7956$	M1	Fully correct strategy for finding the required time	
	Time is 0.703 s (3 sf)	Alcao	required time	
				5 [18]

4766 Statistics 1

1	(i)			
		5 2 6 3 4 7 8 7 1 2 2 3 4 5 5 7 9 8 1 Key 6 3 represents 63 mph	G1 stem G1 leaves CAO G1 sorted G1 key	[4]
	(ii)	Median = 72 Midrange = 66.5	B1 FT B1 CAO	[2]
	(iii)	EITHER: Median since midrange is affected by outlier (52) OR: Median since the lack of symmetry renders the midrange less representative	E1 for median E1 for explanation TOTAL	[2] [8]
2	(i)	(A) $P(X = 10) = P(5 \text{ then } 5) = 0.4 \times 0.25 = 0.1$	B1 ANSWER GIVEN	[1]
		(B) $P(X = 30) = P(10 \text{ and } 20) = 0.4 \times 0.25 + 0.2 \times 0.5 = 0.2$	M1 for full calculation A1 ANSWER GIVEN	[2]
	(ii)	$E(X) = 10 \times 0.1 + 15 \times 0.4 + 20 \times 0.1 + 25 \times 0.2 + 30 \times 0.2 = 20$ $E(X^{2}) = 100 \times 0.1 + 225 \times 0.4 + 400 \times 0.1 + 625 \times 0.2 + 900 \times 0.2 = 445$ $Var(X) = 445 - 20^{2} = 45$	M1 for Σrp (at least 3 terms correct) A1 CAO M1 for Σr ² p (at least 3 terms correct) M1 dep for – their E (X) ² A1 FT their E(X) provided Var(X)	[5]
			> 0 TOTAL	[8]
3	(i)	G R 0.06 0.07 0.69	G1 for two labelled intersecting circles G1 for at least 2 correct probabilities G1 for remaining probabilities	[3]
	(ii)	$P(G) \times P(R) = 0.24 \times 0.13 = 0.0312 \neq P(G \cap R) \text{ or } \neq 0.06$ So not independent.	M1 for 0.24 × 0.13 A1	[2]

	(iii)	$P(R \mid G) = \frac{P(R \cap G)}{P(G)} = \frac{0.06}{0.24} = \frac{1}{4} = 0.25$	M1 for numerator M1 for denominator A1 CAO TOTAL	[3] [8]
4	(i)	P(20 correct) = $\binom{30}{20} \times 0.6^{20} \times 0.4^{10} = 0.1152$	M1 $0.6^{20} \times 0.4^{10}$ M1 $\binom{30}{20} \times p^{20} q^{10}$ A1 CAO	[3]
	(ii)	Expected number = $100 \times 0.1152 = 11.52$	M1 A1 FT (Must not round to whole number)	[2] [5]
5	(i)	P(Guess correctly) = $0.1^4 = 0.0001$	B1 CAO	[1]
	(ii)	$P(Guess correctly) = \frac{1}{4!} = \frac{1}{24}$	M1 A1 CAO TOTAL	[2] [3]
6	(i)	$20 \times 19 \times 18 = 6840$	M1 A1	[2]
	(ii)	$20^3 - 20 = 7980$	M1 for figures – 20 A1	[2]
			TOTAL	[4]

7	(i)	$10 \times 2 = 20.$	M1 for 10 × 2 A1 CAO	[2]
	(ii)	Mean = $\frac{10 \times 65 + 35 \times 75 + 55 \times 85 + 20 \times 95}{120} = \frac{9850}{120} = 82.08$ It is an estimate because the data are grouped.	M1 for midpoints M1 for double pairs A1 CAO E1 indep	[4]
	(iii)	$10 \times 65^{2} + 35 \times 75^{2} + 55 \times 85^{2} + 20 \times 95^{2} (= 817000)$ $S_{xx} = 817000 - \frac{9850^{2}}{120} (= 8479.17)$ $S = \sqrt{\frac{8479.17}{119}} = 8.44$	M1 for Σfx^2 M1 for valid attempt at S_{xx} A1 CAO	[3]
	(iv)	$\overline{x} - 2s = 82.08 - 2 \times 8.44 = 65.2$ $\overline{x} + 2s = 82.08 + 2 \times 8.44 = 98.96$ So there are probably some outliers.	M1 FT for $\overline{x} - 2s$ M1 FT for $\overline{x} + 2s$ A1 for both E1 dep on A1	[4]
	(v)	Negative.	E1	[1]
	(vi)	Upper bound 60 70 80 90 100 Cumulative frequency 0 10 45 100 120	C1 for cumulative frequencies S1 for scales L1 for labels 'Length and CF' P1 for points J1 for joining points dep on P1 All dep on attempt at cumulative frequency.	[5]
			TOTAL	[1

8	(i)	(A) P(Low on all 3 days) = $0.5^3 = 0.125$ or $\frac{1}{8}$	M1 for 0.5 ³	
		(B) D(I are an at least 1 day) = 1 $0.5^3 = 1$ $0.125 = 0.075$	A1 CAO M1 for 1 – 0.5 ³	[2]
		(B) P(Low on at least 1 day) = $1 - 0.5^3 = 1 - 0.125 = 0.875$	M1 for 1 – 0.5° A1 CAO	[2]
		(C) P(One low, one medium, one high) = $6 \times 0.5 \times 0.35 \times 0.15 = 0.1575$	M1 for product of probabilities $0.5 \times 0.35 \times 0.15$ or $^{21}/_{800}$ M1 × 6 or × 3! or $^{3}P_{3}$ A1 CAO	[3]
	(ii)	$X \sim B(10, 0.15)$ (A) $P(\text{No days}) = 0.85^{10} = 0.1969$ Or from tables $P(\text{No days}) = 0.1969$	M1 A1	[2]
		(B) Either P(1 day) = $\binom{10}{1} \times 0.15^1 \times 0.85^9 = 0.3474$ or from tables P(1 day) = P(X \le 1) - P(X \le 0) = 0.5443 - 0.1969 = 0.3474	M1 $0.15^{1} \times 0.85^{9}$ M1 $\binom{10}{1} \times p^{1} q^{9}$ A1 CAO OR: M2 for $0.5443 - 0.1969$ A1 CAO	[3]
	(iii)	Let $X \sim B(20, 0.5)$ Either: $P(X \ge 15) = 1 - 0.9793 = 0.0207 < 5\%$ Or: Critical region is $\{15,16,17,18,19,20\}$ 15 lies in the critical region. So there is sufficient evidence to reject H_0	Either: B1 for correct probability of 0.0207 M1 for comparison Or: B1 for CR, M1 for comparison A1 CAO dep on B1M1	
		Conclude that there is enough evidence to indicate that the probability of low pollution levels is higher on the new street.	E1 for conclusion in context	[5]
		H ₁ has this form as she believes that the probability of a low pollution level is greater in this street.	E1 indep TOTAL	[17]

4767 Statistics 2

1	(i)			
	(1)	1200 1000 1000 400 400 0 500 1000 1500 2000	G1 For values of <i>a</i> G1 for values of <i>t</i> G1 for axes	[3]
	(ii)	a is independent, t is dependent since the values of a are not subject to random variation, but are determined by the runways which the pilot chooses, whereas the values of t are subject to random variation.	B1 E1dep E1dep	[3]
	(iii)	$\bar{a} = 900, \bar{t} = 855.2$ $b = \frac{S_{at}}{S_{aa}} = \frac{6037800 - 5987 \times 6300 / 7}{8190000 - 6300^2 / 7} = \frac{649500}{2520000} = 0.258$ $OR b = \frac{6037800 / 7 - 855.29 \times 900}{8190000 / 7 - 900^2} = \frac{92785}{360000} = 0.258$ hence least squares regression line is:	B1 for \bar{a} and \bar{t} used (SOI) M1 for attempt at gradient (b) A1 for 0.258 cao M1 for equation of	
		$t - \overline{t} = b(a - \overline{a})$ $\Rightarrow t - 855.29 = 0.258 (a - 900)$ $\Rightarrow t = 0.258a + 623$	line A1 FT for complete equation	[5]
	(iv)	(A) For $a = 800$, predicted take-off distance = $0.258 \times 800 + 623 = 829$ (B) For $a = 2500$, predicted take-off distance = $0.258 \times 2500 + 623 = 1268$	M1 for at least one prediction attempted A1 for both answers (FT their equation if <i>b</i> >0)	
		Valid relevant comments relating to the predictions such as: First prediction is interpolation so should be reasonable Second prediction is extrapolation and may not be reliable	E1 (first comment) E1 (second comment)	[4]
	(v)	$a = 1200 \Rightarrow$ predicted $t = 0.258 \times 1200 + 623 = 933$ Residual = $923 - 933 = -10$ The residual is negative because the observed value is less than the predicted value.	M1 for prediction M1 for subtraction A1 FT E1 Total	[4] [19]

4767		Mark Scheme	January 2	N. M.
2 (i)		f 10 is faulty) $ \times 0.02^{1} \times 0.98^{9} = 0.1667 $	M1 for coefficient M1 for probabilities A1	[3]
(ii)	n is la	arge and p is small	B1, B1 Allow appropriate numerical ranges	[2]
(iii)		$50 \times 0.02 = 3$ $P(X = 0) = \tilde{e}^{-3} \frac{3^0}{0!} = 0.0498 \text{ (3 s.f.)}$ or from tables = 0.0498 Expected number = 3 Using tables: $P(X > 3) = 1 - P(X \le 3)$ = 1 - 0.6472 = 0.3528	B1 for mean (soi) M1 for calculation or use of tables A1 B1 expected no = 3 (soi) M1 A1	[3]
(iv)	(A) (B)	Binomial(2000,0.02) Use Normal approx with $\mu = np = 2000 \times 0.02 = 40$ $\sigma^2 = npq = 2000 \times 0.02 \times 0.98 = 39.2$ $P(X \le 50) = P\left(Z \le \frac{50.5 - 40}{\sqrt{39.2}}\right)$ $= P(Z \le 1.677) = \Phi(1.677) = 0.9532$	B1 for binomial B1 for parameters B1 B1 B1 for continuity corr. M1 for probability using correct tail A1 CAO	[2]
	NB P	oisson approximation also acceptable for full marks	Total	[18]

4767	Mark Scheme	January 2	N. M. Marins Cloud Com
3 (i)	(A) $P(X < 50)$ $= P\left(Z < \frac{50 - 45.3}{11.5}\right)$ $= P(Z < 0.4087)$ $= \Phi(0.4087)$ $= 0.6585$ (B) $P(45.3 < X < 50)$	M1 for standardising M1 for correct structure of probability calc' A1 CAO inc use of diff tables NB When a candidate's answers suggest that (s)he appears to have neglected to use the difference column of the Normal distribution tables penalise the first occurrence only	[3]
(ii)	$= 0.6585 - 0.5$ $= 0.1585$ From tables $\Phi^{-1}(0.9) = 1.282$	M1 A1 B1 for 1.282 seen	[2]
	$\frac{k-45.3}{11.5} = 1.282$ $k = 45.3 + 1.282 \times 11.5 = 60.0$	M1 for equation in <i>k</i> A1 CAO	[3]
(iii)	P(score = 111) =P(110.5 < Y < 111.5) = $P\left(\frac{110.5 - 100}{15} < Z < \frac{111.5 - 100}{15}\right)$ = $P(0.7 < Z < 0.7667)$	B1 for both continuity corrections M1 for standardising	
	$= \Phi(0.7667) - \Phi(0.7)$ $= 0.7784 - 0.7580$ $= 0.0204$	M1 for correct structure of probability calc' A1 CAO	[4]
(iv)	From tables, $\Phi^{-1}(0.3) = -0.5244$, $\Phi^{-1}(0.8) = 0.8416$ $22 = \mu + 0.8416 \sigma$ $15 = \mu - 0.5244 \sigma$ $7 = 1.3660 \sigma$ $\sigma = 5.124$, $\mu = 17.69$	B1 for 0.5244 or 0.8416 seen M1 for at least one equation in z, μ & σ A1 for both correct M1 for attempt to solve two appropriate equations A1 CAO for both	[5]
		TOTAL	[17]

4767	Mark Scheme	January 2	1. mymai
4 (i)	H ₀ : no association between size of business and recycling service used. H ₁ : some association between size of business and recycling service used.	B1 for both	[1]
(ii)	Expected frequency = $78/285 \times 180 = 49.2632$ Contribution = $(52 - 49.2632)^2 / 49.2632$ = 0.1520	M1 A1 M1 for valid attempt at (O-E) ² /E A1 <i>NB Answer given</i> Allow 0.152	[4]
(iii)	Test statistic $X^2 = 0.6041$ Refer to \mathcal{X}_2^2 Critical value at 5% level = 5.991 Result is not significant There is no evidence to suggest any association between size of business and recycling service used. NB if H_0 H_1 reversed, or 'correlation' mentioned in part (i), do not award B1in part (i) or E1 in part (iii).	B1 B1 for 2 deg of f(seen) B1 CAO for cv B1 for not significant E1	[5]
(iv)	H ₀ : μ = 32.8; H ₁ : μ < 32.8 Where μ denotes the population mean weight of rubbish in the bins. Test statistic = $\frac{30.9 - 32.8}{3.4/\sqrt{50}} = -\frac{1.9}{0.4808} = -3.951$ 5% level 1 tailed critical value of z = -1.645 -3.951 < -1.645 so significant. There is sufficient evidence to reject H ₀	B1 for use of 32.8 B1 for both correct B1 for definition of μ M1 must include √50 A1 B1 for ±1.645 M1 for sensible comparison leading to a conclusion	
	There is evidence to suggest that the weight of rubbish in dustbins has been reduced.	A1 for conclusion in words in context TOTAL	[8]

4768 Statistics 3

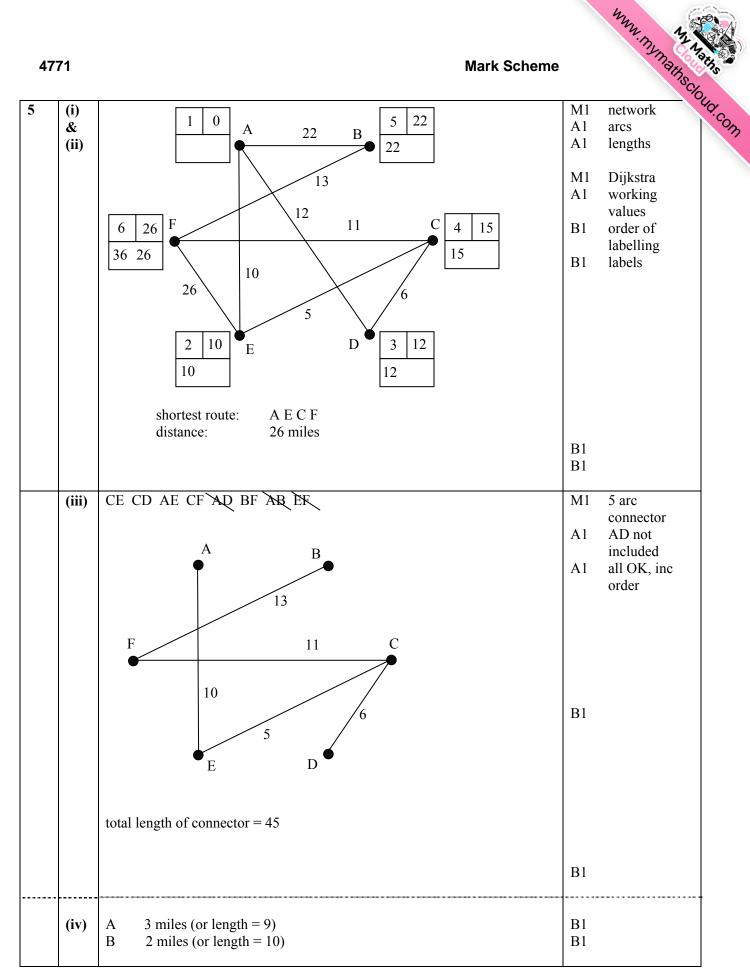
1 (i)	H_0 : The number of eg by $B(3, \frac{1}{2})$	ggs hatched ca	an be modelled	B1		
	H ₁ : The number of eg modelled by B(3,		annot be	B1		
	With $p = \frac{1}{2}$					
	Probability	0.125	0.375	0.375	0.125	
	Exp'd frequency	10	30	30	10	
	Obs'd frequency	7	23	29	21	
	$X^2 = 0.9 + 1.6333 + $ $= 14.666(7)$	0.0333 + 12.	1	M1 A1 M1 A1	Probs \times 80 for expected frequencies. All correct. Calculation of X^2 . c.a.o.	
	Refer to χ_3^2 .			M1	Allow correct df (= cells – 1) from wrongly grouped table and ft. Otherwise, no ft if wrong. $P(X^2 > 14.667) = 0.00212$.	
	Upper 5% point is 7.8	R15		A1	No ft from here if wrong.	
	Significant.				ft only c's test statistic.	
	Suggests it is reasona = ½ does not appl	* *	e model with p	A1	ft only c's test statistic.	[10]
(ii)	$\bar{x} = \frac{144}{80} = 1.8$ $\therefore \hat{p} = \frac{1.8}{3} = 0.6$			B1	C.a.o.	
	$\therefore \hat{p} = \frac{1.8}{3} = 0.6$				Use of $E(X) = np$. ft c's mean, provided $0 < \hat{p} < 1$.	[2]
(iii)	Refer to χ_2^2 .			M1	Allow df 1 less than in part (i). No ft if wrong.	
	Upper 5% point is 5.9	991.		A1	No ft if wrong.	
	Suggests it is reasonable to suppose model with estimated p does apply.				ft provided previous A mark awarded.	[3]
(iv)	For example: Estimating <i>p</i> leads to at the expense of t freedom. The model in (i) fails	he loss of 1 d	egree of	E2	Reward any two sensible points for E1 each.	[2]
	underestimate for X=	- J.			Total	[17]

				· S
2 (a)	$f(x) = \frac{1}{72} (8x - x^2)$, $2 \le x \le 8$			
(i)	$F(x) = \int_{2}^{x} \frac{1}{72} (8t - t^{2}) dt$ $= \frac{1}{72} \left[4t^{2} - \frac{t^{3}}{3} \right]_{2}^{x}$ $= \frac{1}{72} \left(4x^{2} - \frac{x^{3}}{3} - 16 + \frac{8}{3} \right) = \frac{12x^{2} - x^{3} - 40}{216}$	M1 A1 A1	Correct integral with limits (which may be implied subsequently). Correctly integrated Limits used. Accept unsimplified form.	[3]
(ii)	1 + F(x) 0.5 - x	G1 G1 G1	Correct shape; nothing below $y = 0$; non-negative gradient. Labels at $(2, 0)$ and $(8, 1)$. Curve (horizontal lines) shown for	
	' 2 4 6 8 10		x < 2 and $x > 8$.	[3]
(iii)	$F(m) = \frac{1}{2} \qquad \therefore \frac{12m^2 - m^3 - 40}{216} = \frac{1}{2}$ $\therefore 12m^2 - m^3 - 40 = 108$ $\therefore m^3 - 12m^2 + 148 = 0$	M1	Use of definition of median. Allow use of c's F(x). Convincingly rearranged. Beware: answer given.	
	Either $F(4.42) = 0.5003(977) \approx 0.5$ Or $4.42^{3} - 12 \times 4.42^{2} + 148 = -0.0859(12) \approx 0$ $\therefore m \approx 4.42$	E1	Convincingly shown, e.g. 4.418 or better seen.	[3]

					,		
2 (b)	H_0 : $m = 4.42$				B1	Both. Accept hypotheses in words.	
	where m is the population median				B1	Adequate definition of <i>m</i> to include	
				Ī		"population".	
	Weights	-4.42	Rank of				
			diff				
	3.16	-1.26	7				
	3.62	-0.80	6				
	3.80	-0.62	4				
	3.90	-0.52	3				
	4.02	-0.40	2		3.54	0 1 1 1 10	
	4.72	0.30	1		M1	for subtracting 4.42.	
	5.14	0.72	5		3.61	6 1	
	6.36	1.94	8		M1	for ranks.	
	6.50	2.08	9		A1	ft if ranks wrong.	
	6.58	2.16	10				
	6.68	2.26	11				
	6.78	2.36	12				
				<u>-</u>			
	$W_{-} = 2 + 3 +$	-4+6+7=	22		B1	$(W_{+} = 1 + 5 + 8 + 9 + 10 + 11 + 12)$	
						= 56)	
	Refer to Wilcoxon single sample tables for				M1	No ft from here if wrong.	
	n = 12.						
	Lower 2½%	point is 13 (or upper is 65 i	if 56	A1	i.e. a 2-tail test. No ft from here if	
	used).					wrong.	
	Result is not significant. Evidence suggests that a median of 4.42 is				A 1	ft only c's test statistic.	
					A1	ft only c's test statistic.	[10]
	consistent w	ith these data	ì.				
						Total	[19]

3 (i)	Must assume			
(1)	Normality of population	B1		
	• of <u>differences</u> .	B1		
	H_0 : $\mu_D = 0$	B1	Both. Accept alternatives e.g. μ_D <	
	$H_1: \mu_D > 0$		0 for H ₁ , or $\mu_B - \mu_A$ etc provided	
	$\Pi_{\mathbb{R}}, \mu_{\mathcal{D}} \geq 0$		adequately defined. Hypotheses in	
			words only must include	
			"population". Do NOT allow	
			" $\overline{X} =$ " or similar unless \overline{X} is	
			clearly and explicitly stated to be a population mean.	
	Where u is the (nonviction) mean	B1	For adequate verbal definition.	
	Where μ_D is the (population) mean reduction/difference in cholesterol level.	D1	Allow absence of "population" if	
	reduction/difference in cholesteror level.		correct notation μ is used.	
	MUST be PAIRED COMPARISON <i>t</i> test.		correct notation μ is used.	
	Differences (reductions) (before – after) are:		Allow "after – before" if consistent	
	Differences (reductions) (before – after) are.		with alternatives above.	
	-0.1 1.7 -1.2 1.1 1.4 0.5 0.9 2.2		with atternatives above.	
	-0.1 1.7 -1.2 1.1 1.4 0.3 0.9 2.2 -0.1 2.0 0.7 0.3			
		B1	Do not allow $s_n = 0.9415 (s_n^2 =$	
	$\overline{x} = 0.7833$ $s_{n-1} = 0.9833(46)$ $(s_{n-1}^2 = 0.966969)$	D1	0.8864)	
	$T \rightarrow \cdots \rightarrow 0.7833 = 0$	3.54	,	
	Test statistic is $\frac{0.7833 - 0}{0.9833}$	M1	Allow c's \overline{x} and/or s_{n-1} .	
	$\sqrt{12}$		Allow alternative: $0 + (c's 2.718) \times$	
	· ·		$\frac{0.9833}{\sqrt{12}}$ (= 0.7715) for subsequent	
			, ·	
			comparison with \overline{x} .	
			(Or \overline{x} – (c's 2.718) × $\frac{0.9833}{\sqrt{12}}$	
			(= 0.0118) for comparison with 0.)	
	= 2.7595.	A1	c.a.o. but ft from here in any case if	
			wrong.	
			Use of $0 - \overline{x}$ scores M1A0, but	
			ft.	
	Refer to t_{11} .	M1	No ft from here if wrong.	
	G: 1 + 1 110/ · · · · 2710		P(t > 2.7595) = 0.009286.	
	Single-tailed 1% point is 2.718.	A1	No ft from here if wrong.	
	Significant. Seems mean cholesterol level has fallen.	A1	ft only c's test statistic.	[11]
	Seems mean cholesterol level has failen.	A1	ft only c's test statistic.	[11]
(**)) A 1	O11	
(ii)	CI is $\overline{x} \pm$	M1	Overall structure, seen or implied.	
	2.201	B1	From t_{11} , seen or implied.	
	$\times \frac{s}{\sqrt{12}} = (-0.5380, 1.4046)$	A1	Fully correct pair of equations	
	√12		using the given interval, seen or	
			implied.	
	$\overline{x} = \frac{1}{2}(1.4046 - 0.5380) = 0.4333$	B1	_	
		M1	Substitute \overline{x} and rearrange to find s.	•
	$s = (1.4046 - 0.4333) \times \frac{\sqrt{12}}{2.201} = 1.5287$	A1	c.a.o.	
	Using this interval the doctor might conclude	E1	Accept any sensible comment or	
	that the mean cholesterol level did not seem to		interpretation of this interval.	[7]
	have been reduced.			
			Total	[18]

			nn	3, 4,
4768	Mark Sch	neme	January 20	Maths C.
4	$A \sim N(80, \ \sigma = 11)$ $B \sim N(70, \ \sigma = v)$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.	Mynaths Cloud con
(i)	$P(A < 90) = P\left(Z < \frac{90 - 80}{11} = 0.9091\right)$ $= 0.8182$	M1 A1 A1	For standardising. Award once, here or elsewhere. c.a.o.	[3]
(ii)	$W_B = B_1 + B_2 + \dots + B_6 + 15 \sim N(435,$ $\sigma^2 = v^2 + v^2 + \dots + v^2 = 6v^2)$ $P(\text{this} < 450) = P\left(Z < \frac{450 - 435}{v^2/6}\right) = 0.8463$	B1 B1 M1	Mean. Expression for variance. Formulation of the problem.	
	$\therefore \frac{450 - 435}{v\sqrt{6}} = \Phi^{-1}(0.8463) = 1.021$ $\therefore v = \frac{15}{1.021 \times \sqrt{6}} = 5.9977 = 6 \text{ grams (nearest gram)}$	B1	Inverse Normal. Convincingly shown, beware A.G.	[5]
(iii)	$W_A = A_1 + A_2 + + A_5 + 25 \sim N(425,$ $\sigma^2 = 11^2 + 11^2 + + 11^2 = 605)$ $D = W_A - W_B \sim N(-10,$ $605 + 216 = 821)$ Want $P(W_A > W_B) = P(W_A - W_B > 0)$ $= P\left(Z > \frac{0 - (-10)}{\sqrt{821}} = 0.3490\right) = 1 - 0.6365 = 0.3635$	B1 M1 A1 M1	Mean. Accept " $B - A$ ". Variance. Accept sd (= 28.65).	[5]
(iv)	$\bar{x} = \frac{3126.0}{60} = 52.1,$ $s = \sqrt{\frac{164223.96 - 60 \times 52.1^2}{59}} = 4.8$ CI is given by 52.1 ± 1.96 $\times \frac{4.8}{\sqrt{60}}$ $= 52.1 \pm 1.2146 = (50.885(4), 53.314(6))$	B1 M1 B1 M1 A1	Both correct. c.a.o. Must be expressed as an interval.	[5]
			Total	[18]


4771 Decision Mathematics 1

1	(i) & (ii)	Critical activities: A and D	M1 A1 A1 M1 A1 B1	activity-on- arc C and E OK D OK forward pass backward pass
2	(i)	Red Blue Subgraph Red Red Red	M1 A1	subgraph
		Red Blue Red Swap colours on connected vertices and complete Red Blue Blue Blue	M1 A1 A1 A1 B1	Changing colours top right bottom left not singletons
	(ii)	The rule does not specify a well-defined and terminating set of actions.	В1	

3	(i)	No repeated arcs. No loops	B1 B1
	(ii)	Two disconnected sets, {A,B,D,F} and {C,E,G,H}	M1 A1
	(iii)	G arcs added E	M1 A1
	(iv)	$4 \times 4 = 16 \text{ or } {8 \choose 2} - 12 = 28 - 12 = 16$	B1

www.mymathscloud.com

4	(i)	e.g. Let x be the number of adult seats sold. Let y be the number of child seats sold. $x + y \le 120$ $x + y \ge 100$ $x \ge y$	M1 A1 B1 B1 B1	
		(ii) ^y 120 100	B3	lines (scale must be clear) shading (axes must be clear)
		(iv) £9000 (v) £7500	В1	point + amount
		(iii) £12000 100 120	M1 A1	point amount
			M1 A1	point amount
	(vi)	$6000+60c > 10000 \Rightarrow c \ge 67$	M1 A	.1

at least ... com

(i)	eσ Λ 1	2 → fall			М1	ignore at least
(1)	3 4	5. 6 7 8 →	not fall			proportions
	9, 4,	redraw	1100 1411		' ' '	correct
		10010 11			A1	efficient
					111	
(ii)	_					
					3.51	
					A2	−1 each error
	Three appl	es tall in this	s simulation.		B1√	
(iji)	apple	r n	fall?			
(11.)						
		•	110		M1	
	apple	r n	fall?		A2	−1 each error
	6	4	no			
	onul-					
	O	8	no			
	apple	r n	fall?			
	6	0		days before all have fallen	A1√	
(iv)	apple	r n	fall?			
	1		-			
		1	yes			
			no			
			no			1 1
					A2	−1 each error
	6	2	yes			
	apple	r n	fall?			
	3		picked			
	4	7	no			
	apple	r n	fall?		!	
	4		picked	3 days before none left	B1√	
(v)	more simu	lations			B1	
		(ii) apple 1 2 3 4 5 6 Three appl (iii) apple 2 3 6 apple 6 apple 6 apple 6 apple 6 apple 6 apple 1 2 3 4 5 6 apple 4 apple 4	(ii) apple r n 1 1 1 2 3 3 8 4 0 5 2 6 7 Three apples fall in this (iii) apple r n 2 0 3 1 6 4 apple r n 6 4 apple r n 6 8 apple r n 6 8 apple r n 6 2 apple r n 7 apple r n 7 apple r n 7 apple r n 1 2 1 3 3 3 4 8 5 0 6 2 apple r n 3 4 7 apple r n 4	(ii) apple r n fall? 1 1 yes 2 3 no 3 8 no 4 0 yes 5 2 yes 6 7 no Three apples fall in this simulation. (iii) apple r n fall? 2 0 yes 3 1 yes 6 4 no apple r n fall? 6 8 no apple r n fall? 7 no apple r n fall? 8 no apple r n fall? 9 → redraw in the simulation of the simulation.	(ii) apple r n fall? 1 1 yes 2 3 no 3 8 no 4 0 yes 5 2 yes 6 7 no Three apples fall in this simulation. (iii) apple r n fall? 2 0 yes 3 1 yes 6 4 no apple r n fall? 6 4 no apple r n fall? 6 8 no apple r n fall? 6 9 yes 5 days before all have fallen (iv) apple r n fall? 1 picked 2 1 yes 3 3 no 4 8 no 5 0 yes 6 2 yes apple r n fall? 3 no 4 8 no 5 0 yes 6 2 yes apple r n fall? 3 picked 4 7 no apple r n fall? 3 picked 4 7 no apple r n fall? 3 picked 4 7 no apple r n fall? 3 picked 4 7 no apple r n fall? 3 picked 4 7 no apple r n fall? 3 picked 4 7 no apple r n fall?	(ii) apple rn fall? 1 1 yes 2 3 no 3 8 no 4 0 yes 5 2 yes 6 7 no Three apples fall in this simulation. (iii) apple rn fall? 2 0 yes 3 1 yes 6 4 no apple rn fall? 6 8 no apple rn fall? 6 8 no apple rn fall? 6 0 yes 5 days before all have fallen (iv) apple rn fall? 1 picked 2 1 yes 3 3 no 4 4 8 no 5 0 yes 6 2 yes apple rn fall? 1 picked 2 1 yes 3 3 no 4 8 no 4 8 no 4 8 no 5 0 yes 6 2 yes apple rn fall? 3 picked 4 7 no apple rn fall?

4776 Numerical Methods

1	1.3 1.5 1.4 1.35 1.375 1.3875	LHS 2.868415 3.181981 3.017945 2.941413 2.979232	< 3 > 3	mpe 0.1 0.05 0.025 0.0125	(may be in	nplied)	finishing at this point:	[M1A1] [M1] [A1] [A1] [A1]
	mpe:	0.00625	0.003125	0.001563	0.000781	< 0.001	so 4 more iterations	[M1A1] [TOTAL 8]
2	h 1 0.5 2.536 se	M 2.579768 2.547350 cure by com	<i>T</i> 2.447490 2.513629 parison of <i>S</i>	S 2.535675 2.536110 values.			T S	[M1A1] [M1A1A1] [E1A1] [TOTAL 7]
3(i)		$3 x^2 - 2 x$ = 0.875 hence	so f'(0.5) e given resu					[B1B1] [B1]
(ii)	Requir Hence And so		[M1A1] [A1] [B1] [TOTAL 7]					
4(i)	Convinc	cing algebra t	to given resu	ılt				[M1A1]
(ii)	Eg Mathem (because Subtract	eed larger <i>k</i>) lly	[B1] [B1] [E1] [E1] [TOTAL 6]					

							my 1
47	776			Mark S	Scheme		January 2. Paths Clot
5(i)	x	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$		30/0/
,	0	1.883				1st diff:	-
	1	2.342		0.072		2nd, 3rd	[F1]
	2 3	2.874 3.491		0.073 0.085	0.012		
	4	4.206		0.098	0.012		
				3rd diffs almo	ost constant		[E1]
(ii)			59 × 1.5 + 0.07 or 2.598 to		/ 2! + 0.012	× 1.5 × 0.5 × (-0.5) / 3!	[M1A1A1] [A1] [TOTAL 8]
6 (i)	Forward an Clear states	nd central on the contract of	•	rds.	ference cho	rd has gradient	[G1] [G1G1]
	closer to th	at of the ta	ingent				[E1]
							[subtotal 4]
(ii)	<i>h</i> t	an 60°	$\tan (60 + h)^{\circ}$)	derivative		
. ,		32051	1.880726		0.074338		[M1A1]
		32051	1.804048		0.071997		[A1]
	0.5 1.7	32051	1.767494		0.070886		[A1] [subtotal 4]
(iii)	h		$\tan (60 + h)^{\circ}$	$\tan (60 - h)^{\circ}$		derivative	
(111)	2		1.880726	1.600335		0.070098	[M1A1]
	1		1.804048	1.664279		0.069884	[A1]
	0.5		1.767494	1.697663		0.069831	[A1] [subtotal 4]
(iv)	forward dif	ference:	derivative	diffs	ratio of diffs		
			0.074338				
			0.071997	-0.00234	0.474407	(1 407 1 : 1:	1\ [76.674.1.4.1.4.3
			0.070886	-0.00111	0.474407	(about 0.5, may be implied	ed) [M1A1A1]
	central diff	erence:	derivative	diffs	ratio of diffs		
			0.070098				
			0.069884 0.069831	-0.00021 -5.3E-05	0.24896 forward dif	(about 0.25, less than ference, hence faster)	[M1A1E1] [subtotal 6] [TOTAL 18]

January 2. Parts Co.

7 (i) Sketch showing $y = 3 \sin x$ and y = x with intersection in $(\frac{1}{2}\pi, \pi)$ State or show that there is only one other non-zero root

[G1G Copy [E1] Copy [subtotal 3]

[M1]

(iii) Convincing algebra to given result.

 $x = \sin x + \frac{2}{3}x$ 2.278855 < 2.2788625 2.278865 > 2.2788627 hence results

hence result is correct to 5 dp [M1A1E1] [subtotal 8]

[TOTAL 18]

Grade Thresholds

Advanced GCE Mathematics 3895 7895

January 2010 Examination Series

Unit Threshold Marks

Unit		Maximum Mark	Α	В	С	D	E	U
All units	UMS	100	80	70	60	50	40	0
4751	Raw	72	52	46	40	34	28	0
4752	Raw	72	59	52	45	38	32	0
4753/01	Raw	72	57	50	43	36	29	0
4753/02	Raw	18	15	13	11	9	8	0
4754	Raw	90	74	65	56	48	40	0
4755	Raw	72	55	47	39	31	24	0
4756	Raw	72	54	46	39	32	25	0
4758	Raw	72	61	53	45	37	29	0
4758/02	Raw	18	15	13	11	9	8	0
4761	Raw	72	58	49	41	33	25	0
4762	Raw	72	62	54	46	38	31	0
4763	Raw	72	64	56	48	41	34	0
4766/G241	Raw	72	58	50	42	35	28	0
4767	Raw	72	62	54	46	39	32	0
4768	Raw	72	55	48	41	34	27	0
4771	Raw	72	60	53	46	39	33	0
4776/01	Raw	72	60	53	46	40	33	0
4776/02	Raw	18	14	12	10	8	7	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	A	В	С	D	E	U
7895-7898	600	480	420	360	300	240	0
3895-3898	300	240	210	180	150	120	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	В	С	D	E	U	Total Number of Candidates
7895	27.9	61.3	84.3	95.7	98.7	100	395
7896	54.3	62.9	88.6	100	100	100	35
7897							0
7898							0
3895	27.1	54.1	74.2	88.2	97.3	100	947
3896	41.3	67.5	86.3	95	100	100	80
3897	100	100	100	100	100	100	1
3898	50	50	100	100	100	100	2

For a description of how UMS marks are calculated see: http://www.ocr.org.uk/learners/ums_results.html

Statistics are correct at the time of publication.

www.mymathscloud.com

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

